
ABSTRACT

COALE, JOSEPH MICHAEL. Model Order Reduction for Problems of Nonlinear Radiative
Transfer Based on Nonlinear Projective Techniques and Data-Driven Methodologies.
(Under the direction of Dmitriy Anistratov).

In this work, a series of reduced order models (ROMs) for problems of thermal

radiative transfer (TRT) is developed. These ROMs are formulated using a synthesis

of multiple techniques for dimensionality reduction, including nonlinear projection and

data-driven methodologies. The nonlinear projective approach is applied to the Boltzmann

transport equation (BTE) to derive a hierarchy of low-order moment equations with exact

closures that depend weakly on the BTE solution (e.g. the Eddington tensor). A variety

of data-based methods for dimensionality reduction and estimation are applied to create

a spectrum of approximations for the closures of the low-order moment equations. The

considered methods include the proper orthogonal decomposition (POD), the dynamic

mode decomposition (DMD), and the POD-Galerkin & POD-Petrov-Galerkin projection

approaches. One model is developed that forms approximations for the Eddington tensor

that provides closure to the low-order system of moment equations with the POD and DMD.

A parameterized ROM is developed using POD approximations of the Eddington tensor

and an interpolation scheme in parameter space. Another model finds an approximation for

the Eddington tensor in phase space and time simultaneously from TRT solutions obtained

with diffusion-based models. An additional model derives a POD-Galerkin projection of

the BTE whose solution gives approximate closure to the multilevel system of moment

equations. Another model is developed using a POD-Petrov-Galerkin projection of the

normalized BTE (NBTE) that solves for a normalized radiation intensity distribution that

informs the Eddington tensor, used with the hierarchy of moment equations. Lastly, a

numerical method is developed for memory reduction in implicit time integration schemes

for the BTE with the low-order system of equations in TRT problems.

Numerical results are presented to demonstrate the performance of these ROMs in

the simulation of supersonic radiation shock problems. Each developed model is shown to

effectively and robustly reduce the dimensionality of the nonlinear multiphysical class of

TRT problems. The accuracy of solutions obtained with these models depends on the rank

of approximation. With low-rank every model is shown to produce sufficiently accurate

solutions. Most of the presented models are found to have a-priori prediction capability of

their accuracy, based on the parameter that determines the rank of approximation.
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CHAPTER

1

INTRODUCTION

The ability to accurately model and predict particle transport processes is a necessary

component in obtaining detailed understanding and predictive capabilities for a wide

class of physics. Depending on the application, one may encounter the need to model the

behavior of photons, neutrons, neutrinos, electrons, etc. as they propagate through and

interact with a variety of host media. Each of these types of particles can be modelled

with different forms of the Boltzmann transport equation (BTE) [1]. Radiative transfer is

the primary physics of interest in the following endeavor, where energy is transported

through the propagation, emission and absorption of photon radiation [2, 3].

In this work, a series of reduced-order models (ROMs) are developed for the BTE.

Each of these models approximates the BTE solution with equations that exist in a

lower-dimensional space than the BTE. Such low-dimensional models pose a smaller

computational burden to solve than the typically expensive BTE. These ROMs are

designed with nonlinear multiphysical problems in mind and posses a wide application

space. The fundamental approach used here toward dimensionality reduction of the BTE

combines methods of nonlinear projection with data-driven approximation techniques.
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1.1 Motivation

Radiative transfer becomes the dominant mode of energy redistribution in materials

at extremely high temperatures. The physical phenomena whose behavior is heavily

influenced by this mode of energy redistribution can be found in a wide range of fields

including plasma physics, astrophysics, atmospheric and ocean sciences, combustion and

fire physics, and high-energy-density-physics [4, 5, 6, 7, 8, 9]. Some examples of these

phenomena include supernovae explosions, inertial confinement fusion pellet implosions,

etc.

These types of phenomena are typically modelled with complex multiphysical systems

of differential equations (e.g. radiation hydrodynamics problems) [10, 11, 12, 13]. Inside

these systems, the BTE is used to model the involved radiation transport component.

Finding the solution to these complex systems is an arduous task, associated with an

array of fundamental challenges inherent to the involved equations and necessitating the

use of numerical simulation. The systems are often highly nonlinear with the comprising

equations being tightly coupled to one another. One common source of such tight coupling

is the interaction between the flux of radiation particles and material properties of the host

medium. In problems with large radiative transfer effects, the material opacities depend

on the particle flux whose behavior in turn is influenced by the opacities themselves.

Furthermore the behavior of these systems is characterized by multiple scales in space-time,

with distinct characteristics being associated with different energy ranges. This results in

stiff systems where the solution must account for non-local effects of radiation which may

propagate far beyond the characteristic length of the problem. Lastly, these systems are

high-dimensional. This means that a massive number of degrees of freedom (DoF) are

required to adequately describe their solution, which imposes large memory requirements

and computational load.

The BTE generally drives the overall high-dimensionality exhibited by these systems,

residing in a higher dimensional space than the other multiphysical equations it becomes

coupled to. In 3D geometry its solution depends on 7 independent variables describing

spatial position, particle direction of motion, photon frequency (wave number) and time.

For this reason employing a reduced-order model (ROM) for the BTE can be an effective

means to decrease computational costs innate to multiphysics problems involving radiative

transfer.

ROMs for the BTE seek some approximate low-dimensional representation of the

solution to the BTE (the radiation intensity distribution). The most common models find
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low-dimensional equation(s) that describe integral quantities of the high-order radiation

intensities. These low-order equations can then be used in place of the BTE when modeling

phenomena with radiative transfer effects. The resultant system of equations will depend

on significantly fewer DoF allowing for solutions to be found at lower computational cost.

The development of advanced ROMs for particle transport processes is an active field of

research at the current time in an effort to find efficient models for these complex physics

with low levels of error.

1.2 Dimensionality Reduction for Particle Transport

Problems

Many of the most well-known ROMs for the BTE are derived by leveraging some approx-

imation(s) to remove dependence of the solution on either photon frequency, direction

of motion (angle) or both. In other words, these methods attempt to approximate the

Boltzmann transport solution in velocity space. The popular P1 and flux-limited diffusion

models solve for integral quantities of the BTE solution using moments of the BTE

combined with a linear-in-angle approximation of the radiation intensities [14, 15, 16].

Another group of models are based on the variable Eddington factor (VEF) method

that introduces a closure for the radiation pressure term present in the equations that

govern the first two moments of the radiation intensity by means of the Eddington tensor.

VEF models vary by the way they each approximate the Eddington tensor. The Minerbo

model is derived by means of a maximum entropy closure for the Eddington tensor. The

MN method applies the maximum entropy closure for a system of N moment equations

[17, 18, 19]. Hence, the Minerbo model is the M1 method. Other commonly used models

apply Kershaw, Wilson, Livermore closures [20, 21, 22, 23]. The capabilities of these

ROMs have been extensively studied and remain as useful and computationally cheap

methods for many applications. Even so, the accuracy of these models is limited. This

has generated a need for investigation into more advanced types of ROMs.

In recent times the majority of research done towards development of more advanced

ROMs has been dominated by data-driven type models that have the potential to overcome

such limitations on accuracy. These methods find an advantage by making use of the vast

amounts of data available from experiments and simulations that have been amassed over

the years, with the idea to take advantage of general model-order reduction techniques

combined with some given databases to achieve a reduction in dimensionality. Many
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such techniques are available to choose from [24, 25, 26, 27, 28], some notable examples

including: (i) the proper orthogonal decomposition (POD) (a.k.a. principle component

analysis (PCA) or the Karhunen-Loève expansion) [29, 30, 31, 32, 33, 34], (ii) the dynamic

mode decomposition (DMD) [35, 36, 37, 38], (iii) deep neural networks (DNNs) [39],

(iv) the proper generalized decomposition (PGD) [40], (v) balanced truncation [41] and

(vi) reduced basis methods [42]. These techniques have seen extensive use in the fluid

dynamics community for the modeling of general nonlinear flows [43, 44], linearized flows

[45], compressible flows [46], turbulence [33, 47] and other applications [48, 49]. Naturally

the same techniques also have a wide range of applicability in the development of ROMs

for particle transport.

Several of these types of models have been developed for linear particle transport

problems. A POD-Galerkin projection based methodology has been developed to perform

dimensionality reduction in both space and time for linear dynamical systems and

applied to problems of linear Boltzmann transport [50]. POD-Petrov-Galerkin projection

approaches were used to create ROMs for steady-state, parameterized neutral particle

transport problems in 1D geometry [51, 52]. The DMD has been applied as a surrogate

model to predict neutron populations in subcritical metal systems [53]. Explorations were

done with the PGD for separating (i) spatial and energy variables in multigroup neutron

diffusion problems [54], (ii) spatial and angular variables for the BTE in 1D slab geometry

[55], and (iii) spatial variables for the BTE in 2D Cartesian geometry [56]. A low-rank

manifold projection technique has been used to form a ROM for linear time-dependent

radiation transport problems [57, 58, 59, 60]. Neural networks have been used to (i) obtain

data-driven estimations of closures for PN -type systems of moment equations of the linear

BTE [61, 62], and (ii) create surrogate models for the 1D linear BTE [63, 64] and the 2D

neutron diffusion equation [65]. The POD and reduced-basis methods have been applied

to achieve a reduction in the dimensionality along the angular variable for various neutral

particle transport problems [66, 67, 68, 69, 70].

Neutron transport in nuclear reactor-physics problems has been the subject of data-

driven model reduction research efforts as well. POD-Galerkin and DMD-Galerkin ap-

proaches have been used to model the neutronics in various reactor type problems with

feedback from delayed neutron precursors [71, 72, 73]. The PGD has been used to model

(i) reactor kinetics [74, 75], and (ii) the neutron flux and cross sections for light water

reactors [76]. POD-Galerkin projection was applied to modeling steady-state, parameter-

ized molten salt fast reactor problems [77, 78, 79]. A reduced basis method was applied to

pin-by-pin reactor calcuations [80]. A POD-Galerkin projection method has been devised
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for use with domain-decomposition in reactor simulations [81].

Development of these methods has also been investigated for nonlinear problems of

radiative transfer. A moment-based approach has been used with a POD approximation

of the Eddington tensor [82, 83]. An effective grey, moment based model for multigroup

radiative transfer problems was developed using the POD to approximate frequency-

averaged moment closures [84]. Reduction in frequency dimension was found using an

optimization problem to derive few-group models of radiative heat transfer in plasma

applications [85]. A model has been developed based on a POD-Galerkin projection

of the BTE coupled to moment equations [86]. A numerical method to reduce memory

requirements in implicit radiative transfer methods based on the POD has been investigated

[87]. ROMs for grey nonlinear radiation diffusion problems have been formulated with

the PGD [88] and modal identification method (noting that the P1 model is equivalent to

diffusion in steady state) [89]. POD-Galerkin and trajectory piecewise-linear methods have

been used to generate ROMs for spacecraft thermal analysis with a nonlinear radiative

heat transfer component [90]. POD-based ROMs for radiating fluids have been constructed

by applying a linearized estimation of radiative transfer effects based on POD data of

non-radiating fluids [91, 92]. The frequency dimension in multigroup SP1 radiative heat

transfer calculations has been reduced using a POD-based methodology [93].

1.3 Thermal Radiative Transfer

All of the ROMs presented in this work are developed on the framework of the fundamental

thermal radiative transfer (TRT) problem. The TRT problem models a supersonic flow

of photon radiation through matter, neglecting photon scattering, heat conduction and

external sources. This problem serves as a valuable platform for the development and

testing of new computational methodologies [94, 95, 96]. TRT plays an essential role in

the evolution of many phenomena contained in high-energy density physics and plasma

physics, and the TRT problem inherets all of the fundamental challenges exhibited by the

more general class of radiation hydrodynamics problems. Models that show success on

this platform can be extended to this class of radiation hydrodynamics problems.
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The TRT problem is formulated by the BTE that models photon radiation

1

c

∂I

∂t
+ Ω ·∇I + κ(ν, T )I = κ(ν, T )B(ν, T ), (1.1)

r ∈ Γ, Ω ∈ S, ν ∈ [0,∞), t ∈ [0, tend],

I|t=t0 = I0, I|r∈∂Γ = I in for nΓ ·Ω < 0, (1.2)

and the material energy balance (MEB) equation that models energy exchange between

photons and matter

∂ε(T )

∂t
=

∫ ∞
0

∫
4π

κ
(
I −B

)
dΩdν, (1.3)

T |t=t0 = T 0. (1.4)

Here I(r,Ω, ν, t) is the distribution of photon specific intensities in space (r), direction of

motion (Ω), frequency (ν) and time (t). Γ and ∂Γ are the spatial domain and its surface,

respectively, with nΓ as the unit outward normal to ∂Γ. Directions of photon travel Ω

are contained in the set S = {Ω ∈ R3 : |Ω| = 1}. T (r, t) is the temperature of matter,

κ(ν, T ) is the material opacity, ε(T ) is the material energy density and B(ν, T ) is the

Planckian distribution function of black-body radiation, defined as

B(ν, T ) =
2

h2c2

ν3

e
ν
T − 1

, (1.5)

where ν and T are measured in eV, h is Planck’s constant and c is the speed of light.

Note that κ(ν, T ) = κ(r, ν, t, T ) = ρ(r, t)κ(r, ν, t, T ) where ρ is the material density field

and κ is the mass-averaged photon absorption cross section (a.k.a. photon extinction

coefficient) defined by the atomic cross sections of the underlying material. We also

have that ε(T ) = ε(r, t, T ). The functions κ, κ, ρ and ε are determined by the specific

materials involved in the TRT problem and can accommodate an arbitrary degree of

material inhomogeneity (e.g. by taking on a piecewise form).

1.3.1 Multigroup Thermal Radiative Transfer

We consider the TRT problem discretized in photon frequency with the multigroup

approximation [97], estimating functions of ν to be piecewise constant on a number of

intervals ν ∈ [νg−1, νg] for g = 1, . . . , Ng such that 0 = ν0 < ν1 < · · · < νNg < ∞. The

multigroup BTE is derived by integrating the BTE (Eq. 1.1) over the intervals of photon
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frequencies (
∫ νg
νg−1
· dν) and is written as

1

c

∂Ig
∂t

+ Ω ·∇Ig + κE,g(T )Ig = κB,g(T )Bg(T ), (1.6)

r ∈ Γ, Ω ∈ S, g = 1, . . . , Ng, t ∈ [0, tend],

Ig|t=t0 = I0
g , Ig|r∈∂Γ = I in

g for nΓ ·Ω < 0, (1.7)

where Ig =
∫ νg
νg−1

Iν dν is the specific intensity of photons in group g, Bg =
∫ νg
νg−1

Bν dν

is the group g black-body radiation distribution function, and the material opacities in

group g are defined as [98, 99, 100]

κE,g(T ) =

∫ νg
νg−1

κν(ν, T )Bν(ν, Trad) dν∫ νg
νg−1

Bν(ν, Trad) dν
(1.8)

κB,g(T ) =

∫ νg
νg−1

κν(ν, T )Bν(ν, T ) dν∫ νg
νg−1

Bν(ν, T ) dν
. (1.9)

Here Trad is the temperature of radiation. Applying the multigroup approximation to the

MEB equation (Eq. 1.3) yields

∂ε(T )

∂t
=

Ng∑
g=1

(
κE,g(T )

∫
4π

Ig dΩ− 4πκB,g(T )Bg(T )

)
. (1.10)

1.4 Model Reduction Through Nonlinear Projection

The fundmental approach used in this work to develop ROMs for multiphysical particle

transport problems is based on a nonlinear projective approach. The BTE is projected onto

a series of subspaces to derive a hierarchy of low-order moment equations whose closures

take the form of nonlinear functionals with dependence on the Boltzmann transport

solution.

The essential nonlinear projection of the BTE is formulated using the multilevel

quasidiffusion (QD) method [101], also known as the variable Eddington factor (VEF)

method [102]. This method makes use of a multigrid algorithm over the variables describing

particle frequency (energy) and direction of motion [103, 104, 12, 105, 98, 99, 100, 106,

107, 108, 109]. This approach has been shown to give advantage in solving multiscale,

multiphysical problems when compared to other methods [110]. The multilevel QD

(MLQD) method is composed by (i) the high-order BTE and (ii) a hierarchy of low-order

7



QD (LOQD) equations for moments of the radiation intensity. The LOQD moment

equations are exactly closed by means of the Eddington (QD) tensor

fg =

∫
4π

(Ω⊗Ω)Ig dΩ∫
4π
Ig dΩ

, (1.11)

and other functionals that are weakly dependent on the BTE solution. Each of the LOQD

equations represent conservation laws for certain integral quantities of the radiation

intensities, and account for different scales of the problems we solve. Multiphysical

equations like the MEB equation are coupled to the low-order moment equations on the

same dimensional scale as occupied by the multiphysics. This low-dimensional coupling of

involved multiphysics provides an initial reduction of dimensionality for particle transport

problems, while involving no approximations.

The MLQD methodology provides a powerful and flexible framework for the develop-

ment of new ROMs. A wide spectrum of ROMs can be derived from the MLQD method

by defining approximations for the closures that define the LOQD equations. The features

possessed by each of these ROMs can be defined by the types of approximations that are

used. However, all such ROMs are able to conserve fundamental particle transport physics

and effectively deal with multiscale behaviors by using the LOQD moment equations.

Some example ROMs that are derived from this framework include the P1, diffusion and

flux-limited diffusion models. The aforementioned models based on the VEF method are

also part of this class of ROMs.

1.5 The Normalized Boltzmann Transport Equation

Some of the ROMs devised in this work make use of the BTE for a normalized radiation

intensity function, referred to henceforth as the normalized BTE (NBTE). This equation

solves for the normalized radiation intensity distribution

Īg =
Ig
φg
, (1.12)

where φg is the zeroth moment of the radiation intensity in group g, defined as

φg =

∫
4π

Ig dΩ. (1.13)

The prospect of using the NBTE in place of the BTE is appealing in certain contexts where
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the properties of Īg can be leveraged, having shown success in VEF methods [111, 112],

flux-limited diffusion theory [113], and Monte-Carlo (MC) applications [114]. In relation

to model order reduction and the MLQD methodology [101, 102, 104], there are two

properties in particular to Īg that are especially valuable. Īg acts as the group-wise shape

function of intensities, and its fundamental modes can be extracted with less numerical

noise since the potentially large fluctuations in magnitude across phase space are contained

in φg. Secondly Īg exists in the same space as the Eddington tensor which gives closure

to the LOQD system; the Eddington tensor is simply the second angular moment of Īg,

given by

fg =

∫
4π

(Ω⊗Ω)Īg dΩ. (1.14)

The NBTE can be derived by substituting the definition for Īg (Eq. 1.12) into the

BTE (Eq. 1.6) to obtain

1

c

∂(φg Īg)

∂t
+ Ω ·∇(φg Īg) + κE,g(φg Īg) = κB,gBg, (1.15)

which after some manipulations can be written in a similar form to the BTE with a

modified opacity
1

c

∂Īg
∂t

+ Ω ·∇Īg + κ̂E,g Īg = κB,gB̄g, (1.16)

where

B̄g =
Bg

φg
, (1.17)

and

κ̂E,g = κE,g +
1

c

∂ ln(φg)

∂t
+ Ω ·∇ ln(φg). (1.18)

1.6 Main Contributions Presented for Defense

The primary goal of this work is to develop and study a series of advanced ROMs

for nonlinear TRT that allows for fast and accurate simulation of high-energy density

physical phenomena. These ROMs are based on a synthesis of multiple techniques for

dimensionality reduction, including nonlinear projection and data-driven methodologies.

Each ROM is founded on the MLQD method, and uses various data-based approaches

to find low-dimensional estimations for closures of the involved moment equations. This

combined approach for dimensionality reduction allows for the creation of highly-accurate,

low-dimensional models with natural handling of multiphysics and nonlinearities. In this
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dissertation we present the following main results:

1. A ROM that applies data-based techniques such as the POD and DMD to approxi-

mate the Eddington tensor that provides closure to the hierarchy of LOQD moment

equations.

2. A ROM that approximates the Eddington tensor for TRT problems by using data

from other known solutions obtained by diffusion-based models

3. A ROM that combines a low dimensional, POD based projection of the BTE with

the low-order system of QD equations

4. A ROM that combines a low dimensional, POD based projection of the normalized

BTE with the low-order system of QD equations

5. A numerical method that uses the POD to reduce memory requirements in implicit

time integration schemes for the BTE in the context of the MLQD method

These ROMs are formulated in a way that allows for application to a wide class

of multiphysical problems of high-energy density physics. Use of the LOQD moment

equations enforces the preservation of fundamental physical properties of the TRT solution.

Furthermore the exchange of energy between radiation and matter is handled at the

lowest-dimensional scale through the low-order moment equations that exist in the same

dimensional space as the MEB equation.

1.6.1 Publications

The results of this research are presented in the following publications:

1. A reduced-order model for thermal radiative transfer problems based on multilevel

quasidiffusion method, published in the proceedings of the 2019 International

Conference on Mathematics and Computational Methods Applied to Nuclear Science

and Engineering (M&C 2019) [82].

2. Data-driven grey reduced-order model for thermal radiative transfer problems

based on low-order quasidiffusion equations and proper orthogonal decomposition,

published in the transactions of the 2019 annual winter conference of the American

Nuclear Society (ANS) [84].
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3. Reduced-order models for thermal radiative transfer based on POD-Galerkin method

and low-order quasidiffusion equations, published in the proceedings of the 2021

International Conference on Mathematics and Computational Methods Applied to

Nuclear Science and Engineering (M&C 2021) [86].

4. Implicit Methods with Reduced Memory for Thermal Radiative Transfer, pub-

lished in the proceedings of the 2021 International Conference on Mathematics and

Computational Methods Applied to Nuclear Science and Engineering (M&C 2021)

[87].

5. Reduced order models for nonlinear radiative transfer based on moment equations

and POD/DMD of Eddington tensor, preprint on arXiv:2107.09174v1 [math.NA]

[83]. The extended version of this preprint will be submitted for journal publication.

These papers that were published as part of the proceedings for international technical

conferences were presented as talks at these venues as well, including at the 2019 Inter-

national Conference on Mathematics and Computational Methods Applied to Nuclear

Science and Engineering held in Portland Oregon, the 2019 annual ANS winter conference

held in Washington D.C., and the 2021 International Conference on Mathematics and

Computational Methods Applied to Nuclear Science and Engineering held in Raleigh

North Carolina. A talk entitled reduced order models for nonlinear radiative transfer

problems based on nonlinear projection approach and proper orthogonal decomposition was

given at the 2021 International Conference on Computational Science and Engineering

(CSE) of the Society for Industrial and Applied Mathematics (SIAM). Two seminars

entitled (i) model order reduction for nonlinear radiative transfer based on moment equa-

tions and data-driven approximations of the Eddington tensor and (ii) dimensionality

reduction for thermal radiative transfer problems using a moment-based approach combined

with the proper orthogonal decomposition were given in 2021 at the Los Alamos National

Laboratory (LANL).
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1.8 Structure of This Work

The remainder of this work is structured as follows. In Chapter 2, the MLQD method

is detailed along with a brief review of the discretization schemes we use. An overview

of the data-driven methods used in this work is given in Chapter 3. In Chapter 4, a

ROM is presented for 2D TRT problems based on data-driven approximation of the

Eddington tensor. A ROM for 2D TRT problems based on estimation of the Eddington

tensor from diffusion based solutions is described in Chapter 5. Chapter 6 describes

a ROM for 1D TRT problems based on a POD-Galerkin projection of the BTE with

low-order moment equations. Chapter 7 presents a ROM for 2D TRT problems based

on a POD-Petrov-Galerkin projection of the NBTE with low-order moment equations.

Implicit methods with reduced memory for 1D TRT problems are described in Chapter 8.

Conclusions and discussions are found in Chapter 9, which is followed by the bibliography

and included appendices.
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CHAPTER

2

THE MULTILEVEL QUASIDIFFUSION

METHOD

In this chapter, the MLQD method is reviewed for multigroup TRT problems. The BTE is

projected in two levels onto a series of low-dimensional subspaces to derive the hierarchy

of LOQD moment equations. Following this, the schemes used to discretize all involved

equations are detailed.

2.1 The Multilevel Quasidiffusion Equations

Two sets of moment equations comprise the MLQD hierarchical system. The first set of

moment equations is derived by projecting the BTE onto the space B spanned by functions

of space, frequency and time. This is done with the projection operator PΩ,i : F → B,

where F is the space of functions of space, direction of motion, frequency and time. The

operator is defined such that for some u ∈ F , PΩ,iu is the ith angular moment of u. For

instance:

PΩ,0u = 〈1, u〉Ω, PΩ,1u = 〈Ω, u〉Ω, PΩ,2u = 〈Ω⊗Ω, u〉Ω, (2.1)
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where the above inner product is defined as 〈v, u〉Ω =
∫

4π
uv dΩ. Applying PΩ,0 and PΩ,1

to the BTE (Eq. 1.6) yields the zeroth and first angular moment equations of the BTE,

respectively

1

c

∂

∂t
〈1, Ig〉Ω + ∇ · 〈Ω, Ig〉Ω + κE,g(T )〈1, Ig〉Ω = 4πκB,g(T )Bg(T ), (2.2a)

1

c

∂

∂t
〈Ω, Ig〉Ω + ∇ · 〈Ω⊗Ω, Ig〉Ω + κE,g(T )〈Ω, Ig〉Ω = 0. (2.2b)

Eq. 2.2a represents the multigroup radiation energy conservation law and Eq. 2.2b

represents the multigroup radiation momentum conservation law. This system can be

reformulated in terms of the group radiation energy density Eg = 1
c
PΩ,0Ig, group radiation

flux F g = PΩ,1Ig and group radiation pressure tensor hg = PΩ,2Ig to derive the multigroup

LOQD equations

∂Eg
∂t

+ ∇ · F g + cκE,g(T )Eg = 4πκB,g(T )Bg(T ), (2.3a)

1

c

∂F g

∂t
+ c∇ · (fgEg) + κ̃R,g(T )F g = 0, (2.3b)

where exact closure is found by recasting the group radiation pressure tensor hg in terms

of the Eddington (QD) tensor defined in Eq. 1.11, which can be expressed as

fg =
〈Ω⊗Ω, Ig〉Ω
〈1, Ig〉Ω

. (2.4)

In optically thin regions, the opacity κ̃R,g is set as κE,g. In optically thick regions κ̃R,g is

set to the Rosseland opacity κR,g, defined as

κR,g(T, Trad) =

∫ νg
νg−1

dB(ν,T ′)
T ′

dν∫ νg
νg−1

1
κ(ν,T )

dB(ν,T ′)
T ′

dν

∣∣∣∣
T ′=Trad

. (2.5)

The boundary and initial conditions (BCs and ICs) for Eqs. 2.3 have the following

form [101, 103]:

nΓ · F g

∣∣
r∈∂Γ

= cCg
(
Eg
∣∣
r∈∂Γ
− Ein

g

)
+ F in

g , Eg
∣∣
t=t0

= E0
g , F g

∣∣
t=t0

= F 0
g, (2.6)
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with the group boundary factors defined as

Cg =

∫
Ω·nΓ>0

nΓ ·ΩIg dΩ∫
Ω·nΓ>0

Ig dΩ

∣∣∣∣
r∈∂Γ

, (2.7)

where

Ein
g =

1

c

∫
Ω·nΓ<0

I in
g dΩ, F in

g =

∫
Ω·nΓ<0

nΓ ·ΩI in
g dΩ, (2.8)

E0
g =

1

c

∫
4π

I0
g dΩ, F 0

g =

∫
4π

ΩI0
g dΩ. (2.9)

Alternative BCs for the LOQD equations can be formulated as [115, 116]

nΓ · F g

∣∣
r∈∂Γ

= cGgEg
∣∣
r∈∂Γ

+ 2F in
g , (2.10)

which make use of the so-called ‘boundary Eddington tensor’

Gg =

∫
4π
|nΓ ·Ω|Ig dΩ∫

4π
Ig dΩ

∣∣∣∣
r∈∂Γ

. (2.11)

Unless otherwise stated, the BCs in Eq. 2.6 are assumed for the LOQD system.

The second set of moment equations is obtained by projecting the multigroup LOQD

equations (Eqs. 2.3) onto the space C spanned by functions of space and time. Here the

projection operator Pν : B → C is used, where Pνug = 〈1, ug〉ν for ug ∈ B. This inner

product is defined as 〈vg, ug〉ν =
∑Ng

g=1 vgug for ug, vg ∈ B. Applying Pν to Eqs. 2.3 gives

∂

∂t
〈1, Eg〉ν + ∇ · 〈1,F g〉ν + c〈κE,g(T ), Eg〉ν = 4π〈κB,g(T ), Bg(T )〉ν , (2.12a)

1

c

∂

∂t
〈1,F g〉ν + c∇ · 〈1, fgEg〉ν + 〈κ̃R,g(T ),F g〉ν = 0, (2.12b)

which represent conservation laws for the total radiation energy and total radiation

momentum, respectively. Eqs. 2.12 can be recast in terms of the total radiation energy

density E = PνEg and total radiation flux F = PνF g to formulate the effective grey
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LOQD equations [98]

∂E

∂t
+ ∇ · F + cκ̄E(T )E = cκ̄BaRT 4, (2.13a)

1

c

∂F

∂t
+ c∇ · (f̄E) + K̄R(T )F + η̄E = 0, (2.13b)

where aR = 4σR
c

is the radiation constant, and σR is the Stefan-Boltzmann constant. These

equations are exactly closed through the following frequency averaged parameters

f̄ =
1∑Ng

g=1Eg

Ng∑
g=1

fgEg, κ̄E =

∑Ng
g=1 κE,gEg∑Ng
g=1Eg

, κ̄B =

∑Ng
g=1 κB,gBg∑Ng
g=1Bg

, (2.14a)

K̄R = diag
(
κ̄R,x, κ̄R,y, κ̄R,z

)
, κ̄R,α =

∑Ng
g=1 κ̃R,g|Fα,g|∑Ng
g=1 |Fα,g|

, α = x, y, z , (2.14b)

η̄ =
1∑Ng

g=1 Eg

Ng∑
g=1

(κ̃R,g − K̄R)F g . (2.14c)

The BCs and ICs for Eqs. 2.13 (with BCs corresponding to those in Eq. 2.6) are defined

by

nΓ · F
∣∣
r∈∂Γ

= cC̄
(
E
∣∣
r∈∂Γ
− Ein

)
+ F in, E

∣∣
t=t0

= E0, F
∣∣
t=t0

= F 0 , (2.15)

where

C̄ =

∑Ng
g=1Cg

(
Eg − Ein

g

)∑Ng
g=1

(
Eg − Ein

g

) ∣∣∣∣∣
r∈∂Γ

, (2.16)

Ein =

Ng∑
g=1

Ein
g , F in =

Ng∑
g=1

F in
g , E0 =

Ng∑
g=1

E0
g , F 0 =

Ng∑
g=1

F 0
g. (2.17)

BCs for the effective grey LOQD system that correspond to the alternative BCs in Eq.

2.10 are defined as

nΓ · F
∣∣
r∈∂Γ

= cḠE
∣∣
r∈∂Γ

+ 2F in, (2.18)
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where

Ḡ =

∑Ng
g=1GgEg∑Ng
g=1Eg

∣∣∣∣∣
r∈∂Γ

. (2.19)

In sum, the MLQD method for TRT problems is formulated by

1. The high-order BTE (Eq. 1.6)

2. The multigroup LOQD system (Eqs. 2.3)

3. The effective grey LOQD system (Eqs. 2.13)

4. The MEB equation (Eq. 1.10) recast in terms of the effective grey unknowns as

∂ε(T )

∂t
= cκ̄EE − cκ̄BaRT 4. (2.20)

The algorithm for solving TRT problems with the MLQD method is shown in Alg. 1. At

each time step, the material temperature and Eddington tensor are ‘lagged’ from the

previous time step to create an initial condition (Note T 0 comes from the problem’s IC

and f0
g is assumed to be 1

3
). A maximum of smax high-order iterations are performed at

each time step, and unless otherwise stated smax =∞ is assumed. The MLQD method is

known to be stable, and as such when smax =∞ the high-order iterations will converge

to the given tolerances at each time step [109]. The QD method with few s iterations can

produce solutions close to the converged one [101, 117]. In the same way, a maximum

number of low-order multigroup iterations is defined qmax and is presumed to be qmax =∞
unless otherwise stated. At each high-order iteration, the BTE is solved to update the

Eddington tensor followed by a set of low-order iterations to converge the LOQD solution

with the current fg. The zeroth s iteration at each time step skips the BTE solve and

uses the lagged information from the previous time step to close the LOQD system.

In practice, the effective grey LOQD moment system is derived in discrete space from

the fully discretized multigroup LOQD moment system. As such the Eqs. 2.13 can take

different forms than what is shown above depending on the chosen discretization schemes.

The discrete form of the effective grey LOQD system used in this work is derived in Sec.

2.4.
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Algorithm 1: The MLQD method for solving TRT problems

n = 0
while tn ≤ tend do

n = n+ 1

T (0) = T n−1

f(0)
g = fn−1

g

s = −1
while s < smax,

‖T (s) − T (s−1)‖ > ε1‖T (s)‖+ ε2,
‖E(s) − E(s−1)‖ > ε1‖E(s)‖+ ε2 do

s = s+ 1

if s ≥ 1 then
Update κE,g,κB,g, Bg with T (s−1)

Solve the BTE (Eq. 1.6) for Ig

Compute f(s)
g from Ig (Eq. 2.4)

end
q = 0
while q < qmax,

‖T (s, q) − T (s, q−1)‖ > ε1‖T (s, q)‖+ ε2,
‖E(s, q) − E(s, q−1)‖ > ε1‖E(s, q)‖+ ε2 do

q = q + 1

Update κE,g,κB,g, κ̃R,g, Bg with T (s−1, q)

Solve multigroup LOQD equations (Eqs. 2.3) with f(s)
g for E

(s, q)
g , F (s, q)

g

Compute spectrum-averaged closures for the effective grey problem
with E

(s, q)
g , F (s, q)

g

Solve effective grey problem (Eqs. 2.13 and 2.20) for
T (s, q), E(s, q), F (s, q)

end

T (s) ← T (s, q)

end

T n ← T (s)

fng ← f(s)
g

end
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2.2 Discretization of the Boltzmann Transport Equa-

tion in 1D Cartesian Geometry

In 1D slab geometry the BTE (Eq. 1.6) is written

1

c

∂Ig
∂t

+ µ
∂Ig
∂x

+ κE,g(T )Ig = 2πκB,g(T )Bg(T ), (2.21)

where µ is the cosine of the angle between the x axis and Ω (i.e. the directional cosine of

particle motion), Ig = Ig(x, µ, t) and T = T (x, t).

The discretization scheme for the 1D BTE introduced in this section uses the implicit

backward-Euler integration scheme in time, the method of discrete-ordinates in angle

[97], and the simple corner balance (SCB) scheme in space [118]. After applying the

backward-Euler and discrete-ordinates schemes, the BTE is written

1

c

Ing,m − In−1
g,m

∆tn
+ µm

∂Ing,m
∂x

+ κn
E,gI

n
g,m = 2πκn

B,gB
n
g , (2.22)

g = 1, . . . , Ng, m = 1, . . . , NΩ, n = 1, . . .

where m is the index of directional cosine, n is the time step index, NΩ is the total number

of discrete directions of motion, ∆tn is the nth time step, κn
E,g = κE,g(T n), κn

B,g = κB,g(T n)

and Bn
g = Bg(T

n). Spatial discretization is applied to a reformulation of Eq. 2.22 that

takes on a pseudo steady-state form

µm
∂Ing,m
∂x

+ κ̃n
E,gI

n
g,m = Qn

g,m, (2.23)

with a modified opacity κ̃n
E,g = κn

E,g + 1
c∆tn

and source Qn
g,m = 2πκn

B,gB
n
g +

In−1
g,m

c∆tn
. Eq. 2.23

is integrated over the left and right halves of each ith spatial cell to yield two half-cell

relations:

µ(Ii − Ii− 1
2
) +

1

2
κ̃E,i∆xiIL,i =

1

2
∆xiQL,i, (2.24a)

µ(Ii+ 1
2
− Ii) +

1

2
κ̃E,i∆xiIR,i =

1

2
∆xiQR,i, (2.24b)

where g, m and n subscripts and superscripts have been neglected for brevity. Here Ii is

the cell-averaged radiation intensity, Ii± 1
2

is the radiation intensity value averaged over the

boundary between cells i and i± 1, and IL/R,i is the radiation intensity on the left/right
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sides of the ith cell. ∆xi is the width of the ith cell. Upwinding conditions are introduced

such that

Ii+ 1
2

= IR,i, µ > 0, (2.25a)

Ii− 1
2

= IL,i, µ < 0, (2.25b)

and finally the cell-averaged radiation intensity is defined as

Ii =
1

2
(IL,i + IR,i). (2.26)

2.3 Discretization of the Boltzmann Transport Equa-

tion in 2D Cartesian Geometry

In 2D Cartesian geometry the BTE (Eq. 1.6) is written

1

c

∂Ig
∂t

+ Ωx
∂Ig
∂x

+ Ωy
∂Ig
∂y

+ κE,g(T )Ig = κB,g(T )Bg(T ), (2.27)

with Ig = Ig(x, y,Ω, t) and T = T (x, y, t). Two distinct discretizations of the BTE are

introduced for 2D Cartesian geometry in this section. Both discretizations use the implicit

backward-Euler integration scheme the method of discrete-ordinates, only differing in

spatial discretization. The two considered spatial discretizations are the SCB [118] and

conservative method of long characteristics [119, 120, 121, 122, 123, 124, 125] schemes.

After applying the backward-Euler and discrete-ordinates schemes, the BTE is written

1

c

Ing,m − In−1
g,m

∆tn
+ Ωx,m

∂Ing,m
∂x

+ Ωy,m

∂Ing,m
∂y

+ κn
E,gI

n
g,m = κn

B,gB
n
g , (2.28)

g = 1, . . . , Ng, m = 1, . . . , NΩ, n = 1, . . .

Both spatial discretizations use a reformulation of Eq. 2.28 that takes on a pseudo

steady-state form

Ωx,m

∂Ing,m
∂x

+ Ωy,m

∂Ing,m
∂y

+ κ̃n
E,gI

n
g,m = Qn

g,m, (2.29)

with a modified opacity κ̃n
E,g = κn

E,g + 1
c∆tn

and source Qn
g,m = κn

B,gB
n
g +

In−1
g,m

c∆tn
. Orthogonal

spatial grids are considered, with ∆xi and ∆yj defined as the (i, j)th cell widths in the ex
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and ey directions, respectively. Ai,j = ∆xi∆yj is the area of the (i, j)th cell.

2.3.1 Simple Corner Balance

The SCB scheme [118] in 2D geometry subdivides each spatial cell into four subcells as

depicted in Fig. 2.1, where intensity values are placed centered on each subcell face and

in the outer corners of each subcell.

Figure 2.1: Sample cell for the simple corner balance scheme

The BTE is integrated over each subcell to obtain the following relations:

1

2
Ωx∆yj

(
Iij, 3

2
− Iij,1−

)
+

1

2
Ωy∆xi

(
Iij, 1

2
− Iij,1+

)
+

1

4
κ̃E,ijAijIij,1 =

1

4
AijQij,1, (2.30a)

1

2
Ωx∆yj

(
Iij,2+ − Iij, 3

2

)
+

1

2
Ωy∆xi

(
Iij, 5

2
− Iij,2−

)
+

1

4
κ̃E,ijAijIij,2 =

1

4
AijQij,2, (2.30b)

1

2
Ωx∆yj

(
Iij,3− − Iij, 7

2

)
+

1

2
Ωy∆xi

(
Iij,3+ − Iij, 5

2

)
+

1

4
κ̃E,ijAijIij,3 =

1

4
AijQij,3, (2.30c)

1

2
Ωx∆yj

(
Iij, 7

2
− Iij,4+

)
+

1

2
Ωy∆xi

(
Iij,4− − Iij, 1

2

)
+

1

4
κ̃E,ijAijIij,4 =

1

4
AijQij,4, (2.30d)

where g, m and n subscripts and superscripts have been neglected for brevity. Eqs. 2.30

are combined with the following relations between the intensities in the cell corners and
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on the inner-most subcell faces

Iij, 1
2

=
1

2

(
Iij,1 + Iij,4

)
, (2.31a)

Iij, 3
2

=
1

2

(
Iij,1 + Iij,2

)
, (2.31b)

Iij, 5
2

=
1

2

(
Iij,2 + Iij,3

)
, (2.31c)

Iij, 7
2

=
1

2

(
Iij,3 + Iij,4

)
. (2.31d)

Upwinding conditions are introduced such that the intensities on each cell-edge forward

of the particle direction Ω are determined from their respective cell-corner intensities, as

depicted in Fig. 2.2:

Iij,2+ = Iij,2, Iij,3+ = Iij,3, Iij,3− = Iij,3, Iij,4− = Iij,4, Ωx > 0, Ωy > 0 (2.32a)

Iij,3+ = Iij,3, Iij,4+ = Iij,4, Iij,4− = Iij,4, Iij,1− = Iij,1, Ωx < 0, Ωy > 0 (2.32b)

Iij,4+ = Iij,4, Iij,1+ = Iij,1, Iij,1− = Iij,1, Iij,2− = Iij,2, Ωx < 0, Ωy < 0 (2.32c)

Iij,1+ = Iij,1, Iij,2+ = Iij,2, Iij,2− = Iij,2, Iij,3− = Iij,3, Ωx > 0, Ωy < 0 (2.32d)

Figure 2.2: Upwinding of the solution intensities for a sample cell
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Finally, relations are defined for the cell-edge and cell-averaged intensities based on

subcell intensities:

Ii,j =
1

4

(
Iij,1 + Iij,2 + Iij,3 + Iij,4

)
, (2.33a)

Ii− 1
2
,j =

1

2

(
Iij,1− + Iij,4+

)
, (2.33b)

Ii,j− 1
2

=
1

2

(
Iij,1+ + Iij,2−

)
, (2.33c)

Ii+ 1
2
,j =

1

2

(
Iij,2+ + Iij,3−

)
, (2.33d)

Ii,j+ 1
2

=
1

2

(
Iij,3+ + Iij,4−

)
, (2.33e)

where Ii,j is the cell-averaged radiation intensity for cell (i, j), Ii+ 1
2
,j is the radiation

intensity averaged over the cell face between cells (i, j) and (i + 1, j), and Ii,j+ 1
2

is the

radiation intensity averaged over the cell face between cells (i, j) and (i, j + 1). This

completes the SCB discretization.

2.3.2 Conservative Long Characteristics

The method of conservative long characteristics [119, 120, 121, 122, 123, 124, 125] is

derived by first performing a change of coordinates from (x, y) to (u, v) where eu = Ω

and eu · ev = 0 as shown in Fig. 2.3. The directional derivative of I then becomes

∂I

∂u
=
∂I

∂x

∂x

∂u
+
∂I

∂y

∂y

∂u
= Ωx

∂I

∂x
+ Ωy

∂I

∂y
= Ω ·∇I. (2.34)

Figure 2.3: Local coordinates in the x-y plane
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The transport equation along characteristics is given

∂I(u)

∂u
+ κ̃E(u)I(u) = Q(u), (2.35)

where once again g, m and n subscripts and superscripts have been eschewed for brevity.

Now Eq. 2.35 can be integrated along a characteristic segment, where u ∈ [u−, u+], to find

I(u+) = I(u−) exp

(
−
∫ u+

u−
κ̃E(u′)du′

)
+

∫ u+

u−
Q(u) exp

(
−
∫ u+

u

κ̃E(u′)du′
)
du. (2.36)

It is assumed that Q and κ̃E are constant inside the characteristic segment, simplifying

this equation to

I(u+) = I(u−)e−κ̃E(u+−u−) +
Q

κ̃E
(
1− eκ̃E(u+−u−)

)
. (2.37)

When defining the points u+ and u−, an underlying spatial grid is assumed to be

present with individual cells where the quantities Q and κ̃E are uniform. u+ and u− are

defined as the intersection (entry and exit) points of a given characteristic with the cell

boundaries in the underlying grid (see Fig. C.2). We assume that for each direction m

there are Km discrete characteristic rays traced across the underlying spatial grid with

widths wm,k, and each kth characteristic ray will be comprised of Sm,k interlinked segments.

The ray tracing algorithm to generate these characteristic rays is detailed in Appendix C.

When projected onto the x− y plane, each (m, k, s)th segment has length `m,k,s. If ζm

is the angle between Ωm and the z axis, then `m,k,s = (u+ − u−) sin(ζm). Therefore Eq.

2.37 can be written as

Im,k,s+1 = Im,k,se
−

κ̃E,i,j`m,k,s
sin(ζm) +

Qm,i,j

κ̃E,i,j
(
1− e−

κ̃E,i,j`m,k,s
sin(ζm)

)
, (2.38)

k = 1, . . . , Km, s = 1, . . . , Sm,k,

where Im,k,s+1 is the radiation intensity at the outgoing face of the (m, k, s)th segment,

κ̃E,i,j and Qm,i,j is the modified opacity and source in the (i, j)th cell that is traced over

by the (m, k, s)th segment. To conserve the discrete particle balance, the length of each

segment is modified to be

`∗m,k,s = γi,j`m,k,s, γi,j =
Ai,j

1
4π

∑
m ωm

∑
k,s∈Cm,i,j `m,k,swm,k

, (2.39)
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where Cm,i,j is the set of characteristic segments contained in cell (i, j) for direction m,

and {ωm}NΩ
m=1 is the set of angular quadrature weights. The optical thickness of each tube

segment is then

τm,k,s =
κ̃n
E,i,j`

∗
m,k,s

sin(ζm)
, (2.40)

and Eq. 2.38 becomes

Im,k,s+1 = Im,k,se
−τm,k,s +

Qm,i,j

κ̃E,i,j
(
1− e−τm,k,s

)
. (2.41)

The segment-average radiation intensity is defined as

¯̄Im,k,s = αm,k,sIm,k,s + (1− αm,k,s)Im,k,s+1, αm,k,s =
1

τm,k,s
− e−τm,k,s

1− e−τm,k,s
. (2.42)

The cell-average radiation intensities are

Im,i,j =

∑
k,s∈Cm,i,j `

∗
m,k,swm,k

¯̄Im,k,s∑
k,s∈Cm,i,j `

∗
m,k,swm,k

(2.43)

The face-average radiation intensities are

Im,i+ 1
2
,j =

∑
k,s∈F

m,i+ 1
2 ,j
wm,kIm,k,s∑

k,s∈F
m,i+ 1

2 ,j
wm,k

, Im,i,j+ 1
2

=

∑
k,s∈F

m,i,j+ 1
2

wm,kIm,k,s∑
k,s∈F

m,i,j+ 1
2

wm,k
(2.44)

where Fm,i+ 1
2
,j and Fm,i,j+ 1

2
are the sets of characteristic segments whose upwind faces

intersect the (i+ 1
2
, j) and (i, j + 1

2
) cell edges, respectively, for direction m.

2.4 Discretization of the Multilevel Quasidiffusion

Equations

To discretize the multigroup LOQD equations (Eqs. 2.3) we apply fully implicit temporal

approximation based on the backward Euler scheme and a second-order finite volume

scheme in space on orthogonal spatial grids [126, 127]. Fig. 2.4 shows a sample spatial cell

i and notations. The multigroup radiation energy balance equation (Eq. 2.3a) is integrated

over the cell i. The multigroup radiation momentum balance equations (Eq. 2.3b) are

integrated over each half of the spatial cell. The resultant discretized multigroup LOQD
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equations are given by

Ai
∆tn

(
En
g,i − En−1

g,i

)
+
∑
f∈ωi

F n
g,f`f + cκn

E,g,iE
n
g,iAi = 4πκn

B,g,iB
n
g,iAi , (2.45a)

Af
c∆tn

(
F n
g,f − F n−1

g,f

)
+ eα · nfc

(
fnαα,g,fE

n
g,f − fnαα,g,iE

n
g,i

)
`f

+ eβ · nf+1c
(
fnαβ,g,f+1E

n
g,f+1 − fnαβ,g,f−1E

n
g,f−1

)`f+1

2
+ κ̃n

R,g,iF
n
g,fAf = 0 ,

α, β = x, y , β 6= α , (2.45b)

where

fg =

(
fxx,g fxy,g

fxy,g fyy,g

)
, (2.46)

i is the cell index; f is the index of faces of the ith cell; `f is the length of the face f ;

ωi is the set of faces of the ith cell, nf is the unit outward normal of the cell face f and

nf = eα for the orthogonal grids; Eg,i and Eg,f are cell-average and face-average radiation

energy densities, respectively; Fg,f = nf · F g is the normal component of the radiation

flux; Ai is the area of the ith cell; Af is the area of the half-cell associated with the edge

f ; n is the index of the instant of time; ∆tn = tn − tn−1 is the nth time step.

Figure 2.4: Notations in the cell i.
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The discretization of the effective grey LOQD equations (Eqs. 2.13) is algebraically

consistent with the above scheme (Eqs. 2.45). The discrete total radiation energy balance

equation is derived by applying the projection operator Pν to Eq. 2.45a and takes the

following form

Ai
∆tn

(
En
i − En−1

i

)
+
∑
f∈ωi

F n
f `f + cκ̄n

E,iE
n
i Ai = cκ̄n

B,iaR(T ni )4 , (2.47)

where

κ̄n
E,i =

∑Ng
g=1 κn

g,iE
n
g,i∑Ng

g=1E
n
g,i

, κ̄n
B,i =

∑Ng
g=1 κn

g,iB
n
g,i∑Ng

g=1B
n
g,i

. (2.48)

Next the discretized multigroup radiation momentum balance equation (Eq. 2.45b) is cast

in terms of F n
g,f . Applying Pν to the resulting equation for F n

g,f yields an equation for the

total radiation flux at each cell face

F n
f = −c

(
eeeα·nnnf

(
D̄nαα,fEn

f−D̄
n
αα,iE

n
i

)
`f+

1

2
eeeβ·nnnf+1

(
D̄nαβ,f+1E

n
g,f+1−D̄

n
αβ,f−1E

n
f−1

)
`f+1

)
+pnf ,

(2.49)

where

D̄nαβ,f ′ =

∑Ng
g=1(κ̃n

g,i)
−1fnαβ,iE

n
g,f ′∑Ng

g=1E
n
g,f ′

f ′ = f − 1, f, f + 1 , (2.50)

κ̃n
g,i = κn

g,i +
1

c∆tn
, pnf =

Ng∑
g=1

F n−1
g,f

1 + c∆tnκn
g,i

. (2.51)
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CHAPTER

3

DATA-DRIVEN METHODS

Several data-driven methodologies are considered in this work for the creation of ROMs.

This chapter provides a review of each of these methods. The POD is outlined in Sec.

3.1, followed by the DMD in Sec. 3.2. Sec. 3.3 provides an overview of POD-Galerkin &

POD-Petrov-Galerkin projection methods.

3.1 The Proper Orthogonal Decomposition

The POD originated in the field of probability theory, used in analyzing stochastic signals.

The POD theorem [128] states that stochastic functions can be expanded in terms of

deterministic functions with random coefficients, allowing for a separation of deterministic

and stochastic parts of the original function. Later the POD was repurposed as a method

to extract underlying fundamental structures in functions of space-time [29, 129, 130]. By

treating evaluations of a spatial-temporal function at different instance of time as separate

realizations of the function, the POD yields an expansion in terms of spatial modes with

temporally dependent coefficients. These spatial modes are commonly referred to as the

POD modes of a function. One of the most prominent advantages of the POD compared
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to other expansion methods is that it converges optimally fast in the quadratic mean.

3.1.1 The Biorthogonal Decomposition

Although many applications are only concerned with the POD modes describing some

function(s), the POD fundamentally yields a spatial-temporal decomposition, called the

biorthogonal decomposition [32]. Traditionally the biorthogonal decomposition applies to

complex-valued functions a(x, t) ∈ C of space x and time t. This can be generalized to

functions of any dimension however, by considering x to represent some arbitrary phase

space occupied by a. For instance, the phase space occupied by the radiation intensity

function I consists of spatial dimension r, frequency of photons ν and direction of motion

Ω. In this sense the biorthogonal decomposition yields a decomposition in phase-space

and time.

Without loss of generality, let X and T represent the phase-space and temporal domains

(which may be either continuous or discrete) upon which the function a(x, t) is defined. A

linear operator G : L2(X)→ L2(T) and its adjoint G∗ : L2(T)→ L2(X) are defined by the

function a(x, t) as follows

(Gu) =

∫
X

au dx, ∀u ∈ L2(X), (3.1)

(G∗v) =

∫
T

a∗v dt, ∀v ∈ L2(T), (3.2)

where a∗ is the complex conjugate of a. If a ∈ L2(X× T) and G is compact, then there

exists the following decomposition [32]

a(x, t) =
∞∑
`=1

α`u
∗
`(x)v`(t), (3.3)

α1 ≥ α2 ≥ · · · ≥ 0, lim
N→∞

αN = 0, 〈u`, u`′〉x = 〈v`, v`′〉t = δ`,`′ ,

where 〈u`, u`′〉x =
∫
X
u`u

∗
`′ dx and 〈v`, v`′〉t =

∫
T
v`v
∗
`′ dt. The functions {u`} and {v`} are

eigenfunctions of the operators G∗G and GG∗, respectively, and each are associated with

the eigenvalues {α2
`}.
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3.1.2 Expansion and Projection of Discrete Data

Let us now consider the POD in the fully-discrete case restricted to real-valued functions,

where we have some vector function a(t) : R→ Rd, evaluated at some set of instances

{tn}mn=0. The evaluated function values are collected in the set {an}mn=0 where an = a(tn).

This dataset is transformed to have zero-mean as the set {ân}mn=0, defined as

ân = an − ā, ā =
1

m+ 1

m∑
n=0

an. (3.4)

The POD finds an orthonormal basis {u`}k`=1 onto which the data vectors {ân}mn=0

can be projected in an optimal sense. The POD basis functions are formulated in such a

way that the projection of {an}mn=0 onto span{ā,u1,u2, . . . ,uk} has minimal error in the

Frobenius norm [131], satisfying the following minimization problem

{u`}k`=1 = arg min
u1,...,uk

m∑
n=0

∥∥∥∥ân − k∑
`=1

〈ân,u`〉u`
∥∥∥∥2

2

. (3.5)

An interpretation of this minimization is that the POD modes optimally capture the

energy associated with the given data set [32]. The rank-k POD representation of the

data {an}mn=0 is constructed from the data mean ā, POD basis functions {u`}k`=1 and

coefficients

αn` = 〈ân,u`〉, n = 0, . . . ,m, ` = 1, . . . , k. (3.6)

The original data points can be approximated by the summation

an ≈ ā+
k∑
`=1

αn`u`. (3.7)

The POD basis functions representing a given dataset are equivalent to the left singular

vectors of the matrix A = [â0, . . . , âm] ∈ Rd×(m+1). The thin (reduced) singular value

decomposition (SVD) of A is

A = USV>, (3.8)

where U ∈ Rd×r and V ∈ R(m+1)×r hold the first r left and right singular vectors of A in

their columns, respectively, and S ∈ Rr×r holds the r nonzero singular values of A along

its diagonal in descending order, where r = rank(A). The POD basis vectors are therefore

the first k columns of U and the POD projection coefficients are αn` = vn,`σ`, where
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σ` is the `th singular value of A and vn,` is the (n, `)th element of V. The rank-k POD

representation of the entire dataset {ân}mn=0 is thus equivalent to the rank-k truncated

SVD (TSVD) of A

A ≈ Ak = UkSkV
>
k , k ≤ r (3.9)

where Uk ∈ Rd×k and Vk ∈ R(m+1)×k hold the first k left and right singular vectors of A

in their columns, respectively, and Sk ∈ Rk×k holds the first k singular values of A along

its diagonal in descending order.

Ak is actually the orthogonal projection of A onto {u`}k`=1, written as Ak = UkU
>
k A.

The error introduced by this orthogonal projection is given by [132]

‖A−UkU
>
k A‖2

F =
r∑

`=k+1

σ2
` . (3.10)

The relative error of the POD approximation in the Frobenius norm is therefore

ξ2 =
‖A−Ak‖2

F

‖A‖2
F

=

∑r
`=k+1 σ

2
`∑r

`=1 σ
2
`

. (3.11)

(1 − ξ2) can be interpreted as the ratio of energy encompassed by the first k POD

modes to the total energy comprised by all POD modes of the given data [47]. Thus the

interpretation of ξ2 is the relative amount of energy that has been truncated from the full

POD basis by using only the first k POD modes. When the POD is performed, we choose

some desired value for ξ and find the rank k that satisfies the following expression

k = min

{
j :

∑r
`=j+1 σ

2
`∑r

`=1 σ
2
`

≤ ξ2

}
(3.12)

3.2 The Dynamic Mode Decomposition

The DMD was initially introduced in the literature as a method to extract important

dynamical modes from data of fluid flows [36]. Soon after, research was done to improve

the underlying DMD theory which yielded several advances in the methodology [133, 37].

One of the most interesting aspects of the method lies in its ties to Koopman theory

[134, 135, 136, 38]. The Koopman operator is an infinite dimensional, linear operator that

defines the temporal evolution of observables defined for dynamical systems [38].

The DMD generates the best-fit linear operator B (in the 2-norm sense) to the data
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{an}mn=0, generating the following dynamic system:

dã(t)

dt
= Bã(t), (3.13)

under the assumption that the time instances {tn}mn=0 are uniformly spaced, i.e.

tn+1 = tn + ∆t, n = 0, . . . ,m− 1 . (3.14)

The solution to Eq. 3.13 approximates the original functional a(t), defined in terms of

the eigenpairs (ϕ`, ω`) of B

ã(t) =
k∑
`=1

β`ϕ`e
ω`t, (3.15)

where {β`}k`=1 are some scalar coefficients. The rank-k DMD representation of the dataset

{an}mn=0 is comprised by the set of eigenpairs and coefficients {(ϕ`, ω`, β`)}k`=1.

To find the eigenpairs (ϕ`, ω`), the following orbital data matrices are defined

X = [a0 a1 . . . am−1] ∈ Rn×m, X̂ = [a1 a2 . . . am] ∈ Rn×m, (3.16)

then B̃ = X̂X+ is the closest approximation to B that can be found given {an}mn=0 in the

Frobenius norm where + signifies the Moore-Penrose pseudo inverse [132]. The eigenpairs

of B̃, written as (ϕ̃`, χ`), are closely related to the eigenpairs of B [37]. ϕ̃` are called

reduced eigenvectors, and can be used to calculate each corresponding eigenvector ϕ`.

ã(t) can be found with the pairs (ϕ`, χ`) at each point {tn}mn=0 using the expansion

ã(tn) =
k∑
`=1

β`ϕ`(χ`)
n, n = 0, . . . ,m. (3.17)

This expression yields the DMD expansion (Eq. 3.15) with the transformation ω` = ln(χ`)
∆t

.

The pairs (ϕ`, χ`) are called DMD modes and eigenvalues and are in practice calculated

via the projected linear operator B̃k = U>k B̃Uk, whose eigenpairs are written as (ϕ̃
(k)
` , χ`).

Here Uk holds the left singular vectors of X in its columns. Note that the eigenvalues of

B̃k are the DMD eigenvalues. The process of calculating the eigenpairs (ϕ`, χ`) is outlined

in Alg. 2 [37].

In Alg. 2 there are two types of DMD modes that can be calculated: (i) exact DMD

modes and (ii) projected DMD modes. In practice the exact DMD modes are preferred, as
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they can be shown to be the eigenvalues of the linear operator B that lie in the image of

X̂. The projected DMD modes have been shown to be simply the projection of the exact

modes onto the image of X [37]. Because the exact DMD modes are generally regarded

as the default in literature we find it important to note that for the ROMs developed in

this paper, when the DMD is invoked we actually use the projected modes.

Algorithm 2: Algorithm for computing DMD modes and eigenvalues [37]

Input: solution data {an}mn=0 and ξ

1. Construct data matrices X, X̂← {an}mn=0 (Eq. 3.16)

2. Compute TSVD X ≈ UkSkV
>
k with k ≤ rank(X) satisfying Eq. 3.12 with ξ

3. Compute reduced DMD matrix B̃k = U>k X̂VkS
−1
k

4. Find eigenpairs {(ϕ̃(k)
` , χ`)}k`=1 of B̃k

5. Compute DMD modes:

• (Exact DMD) ϕ` ← 1
χ`

X̂VkS
−1
k ϕ̃

(k)
` , χ` 6= 0, ` = 1, . . . , k

• (Projected DMD) ϕ̂` ← Ukϕ̃
(k)
` , ` = 1, . . . , k

Output: DMD modes {ϕ`}k`=1 or {ϕ̂`}k`=1 and DMD eigenvalues {χ`}k`=1

The projected DMD modes were used in the original formulation of the DMD [36],

which can be interpreted as a method that approximates the last data-vector as a linear

combination of all former vectors [133], i.e.

am =
m−1∑
n=0

cna
n + ς, (3.18)

where cn are some scalar coefficients and ς is the residual incurred by the DMD approx-

imation. It comes naturally then, that when the exact DMD modes are used instead

of the projected DMD modes, the DMD can be interpreted as approximating the first

data-vector as a linear combination of all latter vectors,

a0 =
m∑
n=1

ĉna
n + ς̂ , (3.19)
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since the exact DMD modes lie in the image of X̂. This effective ‘shift’ of the DMD

residual to the first data-vector can come at a large cost to the time-dependent problems

considered here, where the initial transients tend to be more difficult to capture compared

to later times. It is with this in mind that we choose to utilize the projected DMD modes

in this work when applying the expansion in Eq. 3.15.

After calculating the DMD modes and eigenvalues via Alg. 2, the vector of expansion

coefficients β = (β1, . . . , βk)
> must still be found. Let Φ = [ϕ̂1 . . . ϕ̂k] be the matrix of

(projected) DMD modes and Ξ = diag(χ1, . . . , χk) be the diagonal matrix that holds the

DMD eigenvalues in descending order. Then the DMD expansion of vector an (Eq. 3.17)

can be written in matrix form as follows

Φ(Ξ)nβ = an, n = 0, . . . ,m. (3.20)

The vector β can be found as the solution to this equation for any chosen n ∈ [0, . . . ,m].

This requires inverting a d× k dense linear system however, and for large d can become

expensive. Applying U>k (see Alg. 2) to the left on both sides of Eq. 3.20 and selecting

n = 0 yields the following k × k linear system

Φ̃β = U>k a
0, (3.21)

where Φ̃ = [ϕ̃1 . . . ϕ̃k] is the matrix of reduced DMD modes. The same reduced system

can be derived if Φ was defined with the exact DMD modes [27].

3.2.1 Equilibrium-Subtracted DMD

A variant of the DMD is also considered for model-order reduction purposes which we

will refer to as the equilibrium-subtracted DMD, or DMD-E. The DMD-E differs from

the DMD by constructing the linear operator B to fit the equilibrium-subtracted data

{ǎn}m′n=0, where ǎn = an − ae and ae is an equilibrium solution vector [133, 137] for the

given problem. Note that the DMD-E in the case when ae = ā (ref. Eq. 3.4) is equivalent

to the Fourier expansion of the data [133]. The same algorithm used for the DMD (ref.

Alg. 2) is used to calculate the DMD-E eigenvectors and modes, only replacing {an}mn=0

with {ǎn}m′n=0. The DMD-E representation of a dataset is therefore characterized by the

set of eigenpairs and coefficients {(ϕ̂`, ω`, β`)}k`=1, along with the vector ae. The original
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function a(t) is reconstructed through the following expansion, similar to Eq. 3.15, as

a(t) ≈ ae +
k∑
`=1

β`ϕ̂`e
ω`t. (3.22)

The vector ae is chosen from any equilibrium solution of the underlying system that

determines a(t) [137]. The time-dependent TRT problems under consideration here possess

a steady-state solution that is approached as t→∞. The most natural choice for this

application is then to let ae = lim
t→∞

a(t). In this study ae = a(tm) is used to approximate

the steady-state solution, so that m′ = m− 1 and the equilibrium subtracted data is

ǎn = an − am, n = 0, . . . ,m− 1. (3.23)

3.3 POD-Galerkin Projection

The POD-Galerkin approach to model reduction allows one to derive low-dimensional

representations of differential equations [30, 33, 138, 131]. In essence, an equation can

be projected onto a subset of the proper orthogonal modes that describe a known set of

solutions to that equation. This can be viewed as a discretization scheme that makes use

of problem-specific global basis functions. Let us again consider the function a(x, t) ∈ C,

where x is the set of variables comprising the phase-space occupied by a. Let a be described

by the following residual equation

R(x, t; a)a = 0, (3.24)

where the operatorR : X×T→ C has some nonlinear dependence on a. An approximation

of a can be found by truncating the expansion in Eq. 3.3 to k terms

a(x, t) ≈
k∑
`=1

λ`(t)u
∗
`(x), (3.25)

where λ` = α`v`(t). This can be viewed as an expansion of a in some set of basis functions

{u∗`}k`=1 that span all phase space, with temporally-dependent coefficients {λ`}k`=1. This
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expansion is substituted in Eq. 3.24 to yield

R(x, t; a)
k∑
`=1

λ`(t)u
∗
`(x) = 0. (3.26)

followed by a projection onto the basis {u∗`}k`=1 by applying the inner product 〈u∗`′ , ·〉x for

all `′ = 1, . . . , k

k∑
`=1

〈u∗`′ ,Rλ`u∗`〉x = 0, (3.27)

`′ = 1, . . . , k.

Let us assume that R is separable into two components R(x, t; a) = ∂t + L(x; a) such

that Eq. 3.27 can be written as a system of first-order ordinary differential equations

(ODEs) for the functions {λ`}k`=1

k∑
`=1

〈u∗`′ , u∗`〉x∂tλ`(t) + 〈u∗`′ ,Lu∗`〉xλ`(t) = 0, (3.28a)

λ`|t=0 = 〈u∗` , a|t=0〉x, ` = 1, . . . , k, (3.28b)

`′ = 1, . . . , k.

With the presumption that each u∗` is an a-priori known function, Eq. 3.28a is a k × k
dense linear system whose solution is for the generalized coordinates of a in the basis

{u`}k`=1 (i.e. for {λ`}k`=1).

3.3.1 POD-Galerkin Projection in Discrete Space

In the fully discrete case, considering only real functions, the function a(x, t) ∈ R is

described by a vector of elements in phase space an ∈ Rd at each time step n ∈ [0, . . . ,m].

The discrete analogue of Eq. 3.24, where we restrict ourselves to single-step implicit time

integration schemes (e.g. backward-Euler), is

Rn(an,an−1)an = 0, (3.29)

where Rn : Rd → Rd is the discrete residual operator. The POD basis that describes

{an}mn=0 optimally in the Frobenius norm comprises the left singular vectors of the matrix
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A = [a0, . . . ,am], as described in Sec. 3.1. Here, a POD basis is instead sought to represent

{an}mn=0 optimally in the W norm, satisfying the following optimization problem [131]:

{u`}k`=1 = arg min
u1,...,uk

Nt∑
n=1

∆tn
∥∥∥∥an − k∑

`=1

〈an,u`〉Wu`
∥∥∥∥2

W

, (3.30)

where the norm || · ||2W is a discrete analogue to the norm || · ||2x and is defined by the

specific discretization schemes used to form Rn. More specifically

〈u`′ ,u`〉W = u>`′Wu`, (3.31)

where the elements of W ∈ Rd×d are the quadrature weights corresponding to the

given discretizations in phase space. In order for the POD basis {u`}k`=1 to satisfy the

minimization condition in Eq. 3.30, calculations must be done using the weighted snapshot

matrix

Â = W1/2AH1/2, (3.32)

where H is the temporal counterpart to W containing the weights introduced by the

chosen scheme for time integration. The POD basis functions for this expansion are found

as the first k columns of the matrix U = [u1 . . . ur] ∈ Rd×r, defined by

U = W−1/2Û, (3.33)

where r = rank(Â) and Û is the matrix whose columns hold the left singular vectors of

Â.

The vector an can now be expanded in the first k POD basis functions

an ≈
k∑
`=1

λn`u`, (3.34)

where {λn` }k`=1 are scalar coefficients that depend on the time step n. Substituting this

expansion into Eq. 3.29 gives
k∑
`=1

λn`Rnu` = 0. (3.35)

This equation is overdetermined granted that k < d. Applying the inner product 〈u`′ , ·〉W
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to this equation for `′ = 1, . . . , k yields

k∑
`=1

λn` 〈u`′ ,Rnu`〉W = 0, (3.36a)

λ0
` = 〈u`, a0〉W , ` = 1, . . . , k, (3.36b)

`′ = 1, . . . , k,

which as before is a k × k dense linear system with solution {λn` }k`=1. Note that Eq. 3.36a

enforces the condition that the residual Rn
∑k

`=1 λ
n
`u` ≈ Rnan be W−orthogonal to the

POD basis functions {u`}k`=1.

The computational benefits of finding {an}mn=0 using Eqs. 3.34 & 3.36 should be

apparent compared to the use of Eq. 3.29. In practice k � d so that the vector of

unknowns in the projected equations λ ∈ Rk has many fewer DoF than the original

unknown vector an. Finding λ via Eqs. 3.36 therefore poses a significantly smaller

computational burden than would be required to solve Eq. 3.29.

3.3.2 Petrov-Galerkin Projection in Discrete Space

As noted in the previous section, the solution of a Galerkin projected reduced-order system

satisfies an orthogonality condition on the full-order residual Rnãn with ãn =
∑k

`=1 λ
n
`ui.

This condition does not guarantee stability, since it enforces no bound on the magnitude of

the residual. Petrov-Galerkin projection techniques [139, 140, 141] rectify this problem by

finding a test basis Ψ = [ψ1 . . . ψk] ∈ Rd×k which imposes some optimality (minimization)

condition on the residual. Projecting Eq. 3.35 onto this test basis yields the following

k × k system

k∑
`=1

λn` 〈ψ`′ ,Rnu`〉W = 0, (3.37)

k∑
`=1

〈ψ`′ ,u`〉Wλ0
` = 〈ψ`′ ,a

0〉W , (3.38)

`′ = 1, . . . , k.

When using Petrov-Galerkin projection schemes, we elect to define our test basis

functions as ψ` = dRn(λ`u`)
dλ`

. This choice emanates from Thm. 3.3.1. This same choice of

test basis is used in the least-squares Petrov-Galerkin (LSPG) projection schemes and can
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be shown to minimize the residual Rn(Uλ) in the 2-norm [139, 140]. Thm. 3.3.1 extends

these results for the W norm.

Lemma 3.3.1. The norm ‖ · ‖W is strictly convex if W is symmetric positive definite

Proof. By the definition of the W norm,

‖x‖2
W = x>Wx. (3.39)

Let f(x) = ‖x‖2
W , then

df(x)

dx
= 2x>W,

d2f(x)

dx2
= 2W, (3.40)

since W is symmetric. The Hessian of f(x) is therefore positive definite, since W is

positive definite. This implies f(x) strictly convex.

Theorem 3.3.1. The solution to Eq. 3.37 with test basis functions ψ` = dRn(λ`u`)
dλ`

satisfies

the following minimization problem

λ = arg min
ξ∈Rk
‖Rn(Uξ)‖2

W , (3.41)

where λ = (λ1 . . . λk)
>.

Proof. Let f(x(λ)) = ‖x(λ)‖2
W with x(λ) = Rn(Uλ). Assuming W symmetric positive

definite, f must have a unique minimizer x̂ = x(λ̂) by Lemma 3.3.1. This point occurs at
df
dx

= 0, or equivalently at df
dλ

= 0 since df
dλ

= df
dx

dx
dλ

. These latter two derivatives are

df

dx
= 2x>W,

dx

dλ
=
dRn(Uλ)

dλ
. (3.42)

Setting df
dλ

= 0 therefore leads to the following

df

dx

dx

dλ
= 2x>W

dRn(Uλ)

dλ
= 0>, (3.43)

or equivalently (
dRn(Uλ)

dλ

)>
Wx = 0, (3.44)

where 0 ∈ Rk is the vector of all 0’s. Using the definitions for x and Ψ in Eq. 3.44 gives us

the relation ΨTWRn(Uλ) = 0, which is equivalent to the system in Eq. 3.37. Therefore
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the solution λ to Eqs. 3.37 with Ψ = dRn(Uλ)
dλ

satisfies the minimization problem in Eq.

3.41.

Remark 3.3.1. In this work when Petrov-Galerkin projection schemes are used, the

matrix W is constructed in such a way that all of the involved quadrature weights are

positive. W is also formulated as a diagonal matrix. As such W is symmetric positive

definite in all applications considered here.
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CHAPTER

4

A ROM BASED ON DATA-DRIVEN

APPROXIMATION OF THE

EDDINGTON TENSOR

In this chapter a ROM is derived that uses data-driven techniques to estimate the Edding-

ton tensor which gives closure to the multigroup LOQD system (Eqs. 2.3). The resulting

models consist of the hierarchy of LOQD moment equations (Eqs. 2.3 & 2.13), the MEB

equation (Eq. 2.20) and some data-driven functional that approximates the Eddington

tensor. The POD, DMD and DMD-E are considered (see Ch. 3). A parameterization of

the ROM is developed for the temperature of incoming radiation at the problem boundary

(the radiation drive). Results from a dimensionless study of the TRT problem inform

the specific parameterization. Numerical results are shown to demonstrate the ROM’s

performance. These models are shown to be accurate even with low-rank representations

of the Eddington tensor. A subset of the results presented in this chapter have been

published in [82, 83] and presented at the 2019 International Conference on Mathematics

and Computational Methods Applied to Nuclear Science and Engineering.
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4.1 Approximation of Discrete Data

At an abstract level, the considered class of ROMs for TRT is constructed with some

data-driven functional that approximates closures for the LOQD moment equations. In

practice the chosen data-driven functional must approximate discrete grid functions of the

Eddington tensor and LOQD boundary factors. These grid functions will vary based on

the scheme used to discretize the multigroup LOQD system in space. The finite-volumes

scheme described in Sec. 2.4 is used here and confined to orthogonal spatial grids, denoting

the number of cells in the eeex- and eeey- directions as Nx and Ny respectively.

(a) Cell-wise grid functions (b) Boundary factors

Figure 4.1: Discrete grid functions of the Eddington tensor and boundary factors shown
on a sample 2D spatial mesh

Fig. 4.1 displays the discrete grid functions of the Eddington tensor and boundary

factors defined by considered discretization. Functions of cell centers, vertically aligned

cell faces and horizontally aligned cell faces are denoted by subscripts of c, v and h

respectively. Four distinct boundary factor grid functions are defined that each reside on

a section of the domain boundary.
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Each grid function of the Eddington tensor and boundary factors is collected over the

entire spatial grid as vectors

fnαβ,g,γ ∈ RNγ , γ = v, h, c, α, β = x, y, (4.1a)

Cn
θ,g ∈ RNθ , θ = L,B,R, T, (4.1b)

with dimensions

NL = NR = Ny, NB = NT = Nx, (4.2a)

Nv = (Nx + 1)Ny, Nh = Nx(Ny + 1), Nc = NxNy. (4.2b)

The vectors in Eq. 4.1 can be subsequently ‘stacked’ by frequency group to construct

complete data vectors for each quantity at the nth time step

fnαβ,γ =


fnαβ,1,γ

fnαβ,2,γ
...

fnαβ,Ng ,γ

 ∈ RNgNγ , Cn =


Cn

1

Cn
2

...

Cn
Ng

 ∈ R2Ng(Nx+Ny), (4.3)

where

Cn
g =


Cn
L,g

Cn
B,g

Cn
R,g

Cn
T,g

 ∈ R2(Nx+Ny). (4.4)

It is exactly those vectors (Eq. 4.3) whose data-driven approximation is sought.

Although this formulation is specific to our chosen discretization, it can be easily altered

for use with any other scheme by changing the selected grid functions. The only difference

will then be in the structure of the vectors in Eq. 4.1. When using projection-based

methods like the POD (ref. Sec. 3.1) or the DMD (ref. Sec. 3.2), this approximation is

found through some low-rank representation(s) of a-prioiri known Eddington tensor data.

A mapping operator is also created to form the correct discrete grid functions of the

Eddington tensor and boundary factors from this low-rank data.
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4.2 Low-Rank Projection of the Eddington Tensor

with the POD and DMD

Both the POD and DMD find a low-rank representation of some matrix A, written as Ak
with k ≤ rank(A). Using the notations defined in Ch. 3, Ak is defined as the following

set corresponding to the data-driven projection method of choice

Ak =


ā ∪ {u`, v`, σ`}k`=1, POD

{ϕ̂`, ω`, β`}k`=1, DMD

ae ∪ {ϕ̂`, ω`, β`}k`=1, DMD-E

(4.5)

Given a solution to the TRT problem (Eqs. 1.6 & 1.10) for Nt time steps, the vectors in

Eq. 4.3 are collected in chronological order as columns of the following snapshot matrices

Afαβ,γ = [f 1
αβ,γ f

2
αβ,γ . . . fNtαβ,γ] ∈ RNgNγ×Nt , (4.6)

Ac = [C1 C2 . . . CNt ] ∈ R2Ng(Nx+Ny)×Nt . (4.7)

Let Afαβ,γ(ϑ), Ac(ϑ) be the snapshot matrices that contain the solution to the TRT

problem defined with a set of parameters ϑ ∈ Θ, where Θ is the space of all possible

(feasible) parameter values. The solutions to multiple realizations of the TRT problem,

each defined with one of the parameter sets contained in {ϑi}Nϑi=1 ⊂ Θ, are then held in

the matrices Afαβ,γ(ϑi), Ac(ϑi). The rank-k projection of the data enclosed by each of

these matrices is Afαβ,γ
k (ϑi) and Ack(ϑi).

When grid functions of the Eddington tensor and boundary factors need to be calculated

from {Afαβ,γ
k (ϑi)}Nϑi=1 and {Ack(ϑi)}

Nϑ
i=1, the mapping operator M(t, ϑ) is applied such that

M(t, ϑ){Afαβ,γ
k (ϑi)}Nϑi=1 = f̃αβ,γ(t) ∈ RNgNγ . (4.8)

Here f̃αβ,γ(t) approximates the γ grid function of the α, β component of the Eddington

tensor for the TRT problem with parameters ϑ at time t. The application of M(t, ϑ) to

{Ack(ϑi)}
Nϑ
i=1 similarly approximates the boundary factors for this TRT problem. M(t, ϑ)

can be broken up into the application of two seperate operators I(ϑ) and H(t)

M(t, ϑ){Ak(ϑi)}Nϑi=1 ≡ I(ϑ){H(t)Ak(ϑi)}Nϑi=1, (4.9)

where the superscript of Ak has been dropped for convenience. H(t) constructs a grid
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function at time t from its low-rank representation and I(ϑ) is an interpolation function

of grid functions in Θ. If t is one of the time instances used to generate the original

snapshot matrices {A(ϑi)}Nϑi=1, then H(t)Ak is equivalent to either Eq. 3.7, 3.15 or 3.22

depending on the method used to create Ak. Otherwise H(t) constructs the grid functions

nearest in time to t and interpolates to t.

In essence, the obtained projections hold fundamental information on the Boltzmann

transport solution (i.e. the radiation intensities). The Eddington tensor itself is a projection

of the radiation intensities onto a low-dimensional subspace. That information is projected

again onto a subspace of even lower dimensionality using the POD and DMD. This holds

several benefits. The computational burden of computing the LOQD closures is lessened

as we can store the needed high-order data efficiently in memory, and fewer computations

are required to interpolate between this data. The rank k of approximation is easily

modified to accommodate different simulations, allowing one to adjust the approximation

errors and computational load (via the parameter ξ, see Eq. 3.12).

4.3 Formulation of the Reduced Order Model

The class of ROMs derived in this chapter model TRT physics with the multilevel system

of LOQD equations coupled with the MEB equation, using approximate low-rank closures.

This model is henceforth referred to as the data-driven Eddington tensor (DET) ROM

and is formulated by

• A low-rank representation of known data for the Eddington tensor and low-order

boundary factors, found using either the POD, DMD or DMD-E

• The multigroup LOQD equations (Eqs. 2.3), closed by the Eddington tensor that is

defined via a rank-k POD- or DMD- expansion

• The effective grey problem formed by the effective grey LOQD equations and the

MEB equation (Eqs. 2.13)

This class of ROMs is formulated as having an offline and online stage. Each of these

two stages are executed separately from one another. The offline stage must only be

computed once per used dataset, and performs all necessary actions to obtain the low-rank

sets of data {Af
k(ϑi)}

Nϑ
i=1 and {Ack(ϑi)}

Nϑ
i=1. The online stage is the one executed when the

DET ROM is employed to solve a given TRT problem, and assumes the availability of its

required low-rank data.
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When preparing a DET model to solve a TRT problem (the offline stage), several

realizations of the TRT problem (Eqs. 1.6 & 1.10) are solved with the MLQD method,

which will be referred to as our full-order model (FOM) henceforth. These realizations

correspond to different parameters ϑi ∈ Θ. Some of these parameters can include (i) the

distribution of incoming radiation on the problem boundaries (I in
g ) in frequency and angle,

(ii) the initial state of the problem (T 0, I0
g ), (iii) the opacity function κν . The solutions

to these realizations are projected onto low-rank subspaces as described in Sec. 4.2.

Algorithm 3: Obtaining the solution to TRT problems with the DET class of
ROMs

Input: {Af
k(ϑi)}

Nϑ
i=1, {Ack(ϑi)}

Nϑ
i=1, M

n = 0
while tn ≤ tend do

n = n+ 1

Compute f̃g =M(tn, ϑ){Af
k(ϑi)}

Nϑ
i=1

Compute C̃g =M(tn, ϑ){Ack(ϑi)}
Nϑ
i=1

T (0) = T n−1

q = 0

while ‖T (q) − T (q−1)‖ > ε1‖T (q)‖+ ε2, ‖E(q) − E(q−1)‖ > ε1‖E(q)‖+ ε2 do

Update Bg,κE,g,κB,g, κ̃R,g with T (q)

Solve multigroup LOQD equations (Eqs. 2.3) with f̃g & C̃g for E
(q)
g , F (q)

g

Compute spectrum-averaged coefficients κ̄E, κ̄B, C̄, f̄, D̄

Solve effective grey problem (Eqs. 2.13 and 2.20) for T (q+1), E(q+1), F (q+1)

q = q + 1

end

T n ← T (q)

end

Once the ROM has been prepared via the offline stage, it can be deployed to solve

TRT problems using the online stage. The algorithm to solve TRT problems with these

ROMs is outlined in Alg. 3. At each time step n, an approximation for the multigroup

Eddington tensor and boundary factors on the discrete grid in phase space is calculated by

applying the operatorM to the input low-rank representations of fg and Cg. Iterations are

performed to find the solution to the multilevel system of LOQD moment equations coupled
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with the MEB equation, using the approximate Eddington tensor and boundary factors

to close the system. In parametric applications, the quality of an obtained solution will

depend not only on the rank k of data approximation, but also on the chosen interpolation

scheme I, and the scheme used to sample TRT solutions about the considered parameter

space.

4.4 Numerical Results

The true objective of any ROM is to find solutions of problems that have yet to be solved

(i.e. for ϑ /∈ {ϑi}Nϑi=1). Before such an application can be considered however, certain

qualities of the ROM must first be identified. It is imperative to first demonstrate how

well the ROM can reconstruct an already known solution (ϑ ∈ {ϑi}Nϑi=1). If the ROM fails

to achieve a desired level of accuracy here, or introduces nonphysical effects that cannot

be tolerated, then parameterization is hopeless.

The nonlinear characteristics of our target class of problems prevents the derivation of

any formal theory that can predict this behavior. Such theoretical results are restricted

only to the Eddington tensor. For instance, when using the POD with any value of

ξ ∈ [0, 1] used to define the ROM’s rank k (see Eq. 3.12) it is guaranteed that [132]

‖H(·)Af
k(ϑ)−Af(ϑ)‖F
‖Af(ϑ)‖F

≤ ξ, (4.10)

where H(·)Af
k(ϑ) = Af

k(ϑ) is the rank k POD representation of Af(ϑ). There exist no

rigorous theoretical reasons to expect similar behavior in the solution for the radiation

energy densities E and material temperature T . Although one can show that the full-rank

ROM (ξ = 0) will reproduce the full-order solution for E and T , the essential question is

how these values will converge with ξ. Analysis of how well the ROM can approximate

TRT solutions in time (and phase space) with different values of ξ is another research

item.

At the moment there is no theory addressing these items and therefore numerical

tests must be performed on the method to investigate its properties and performance. A

‘base-case’ or reference FOM solution is found for some test problem to form the ROM

database, and then the same test problem is solved again with the ROM. Comparisons

of the ROM solution to the known FOM solution can be carried out on the considered

discrete grids in phase space and time. It is important to note that the only errors incurred
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by our FOM are due to discretization and as such the FOM will converge to the continuous

TRT solution in the limit Nx, Ny, NΩ, Ng, Nt →∞ while the spatial and temporal domains

remain constant. Therefore we formulate a conjecture that if the solution of the DET

model converges to the discrete FOM solution then it will too converge to the continuous

solution given a database generated on a fine-enough grid.

4.4.1 F-C Test A

Numerical tests of the DET class of ROMs are performed on a 2-dimensional extension

of the well-known Fleck-Cummings (F-C) problem [142], which is described in detail in

Appendix D. This section describes the specific form of the F-C test used in this analysis,

referred to as the F-C Test A.

This test takes the form of a square homogeneous domain in the x − y plane, 6

cm in length on both sides. The domain is initially at a temperature of T 0, the left

boundary of the domain is subject to incoming radiation with blackbody spectrum at

a temperature of T in, and there is no incoming radiation at the other boundaries. The

material is characterized by an analytic opacity function and material energy density,

given in Eqs. D.1 & D.2. The BTE is discretized with the SCB scheme (ref. Sec. 2.3.1) and

all low order equations are discretized with a finite volumes scheme (ref. Sec. 2.4). When

generating ROM solutions to the F-C problem, the following convergence criteria are used

(ref. Alg. 3): ε1 = 10−14 and ε2 = 10−15.

A uniform grid of 20× 20 cells (i.e. Nx = Ny = 20) with side lengths of ∆x = ∆y =

0.3 cm is used to discretize the domain. Ng = 17 frequency groups are defined as shown in

Table D.1. The Abu-Shumays angular quadrature set q461214 with 36 discrete directions

per quadrant is used [143]. The total number of angular directions is NΩ = 144. The F-C

problem is solved for the time interval 0 ≤ t ≤ 6 ns with Nt = 300 uniform time steps

∆t = 2× 10−2 ns.

For this considered discretization, the Eddington tensor fg occupies Nf = 2(Nv +

Nh + Nc)Ng = 4.216 × 104 DoF at a single instance of time. In comparison, the DoF

occupied by the radiation intensities from the simple corner balance scheme equals

NI = 4NxNyNgNΩ = 3.9168×106. This means that even before compressing the Eddington

tensor with the POD or DMD, the required memory occupation is NI
Nf

= 93 times smaller

than for the radiation intensities.
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4.4.2 Analysis of POD Data & Singular Values

The snapshot data used to construct the matrices Afαβ,γ and Ac (see Eqs. 4.6 & 4.7) is

obtained by solving the TRT problem on the given grid in phase-space and time by means

of the MLQD method (the FOM). Convergence criteria for this FOM simulation is set to

ε1 = 10−14 and ε2 = 10−15 (see Alg. 1). Here the parameters T 0 = 1 eV and T in = 1 KeV

are considered as the ‘base-case’ to perform analysis on.
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Figure 4.2: Singular value distributions of select snapshot matrices of grid functions of
the Eddington tensor and boundary factor for the F-C test (included matrices are: (a)
Afxx,c , (b) Afyy,h , (c) Afxy,v , (d) Ac)

The singular values of a select few of those snapshot matrices found for this base case

are depicted in Fig. 4.2. The singular values of those databases not shown here do not

deviate significantly from the chosen plots. The singular values for each of the databases

decay in a similar manner with 3 distinct sharp drops in magnitudes before reaching a

value of approximately 10−14 where decay halts. The singular values that have a value
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at or below 10−14 have reached the limit of machine precision and can be considered

numerically zero.

Although the POD, DMD and DMD-E make use of slight variations on these snapshot

matrices, the singular value distributions of those variant matrices are very similar to

those pictured. For the databases without their final column, used for the DMD, their

SVD is almost exactly the same as for the full matrices since the final column holds near

steady-state data and does not add much new information to the span of the columns. For

the POD when the databases are centered about their column-mean, the only significant

difference from the shown plots is in the first singular value which decreases by roughly

an order of magnitude. The second singular value is also seen to decrease by roughly half.

The equilibrium-subtracted databases used for the DMD-E acquire singular value spectra

very similar to those obtained through the POD.

When the POD, DMD and DMD-E are applied to the databases Afαβ,γ and Ac, the

rank k of projection is determined to satisfy Eq. 3.12 for some value ξ. Tabs. 4.1, 4.2 and

4.3 display the ranks that satisfy this relation for a spectrum of values for ξ. This same

data is graphically depicted in Fig. 4.3.

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac
10−2 15 17 15 15 14 17 14

10−4 34 36 34 34 37 36 35

10−6 49 49 52 49 65 68 48

10−8 115 110 120 115 129 127 87

10−10 152 148 154 153 159 158 132

10−12 179 178 180 180 185 184 160

10−14 203 203 205 205 207 207 188

10−16 300 300 300 300 300 300 300

Table 4.1: Ranks k for each approximate database corresponding to different values of ξ
for the POD

The ranks used for the POD, DMD and DMD-E behave similarly with changes in ξ

for each snapshot matrix, gradually increasing with decreases in ξ until ξ = 10−16 where

each database’s rank increases by roughly 100. This is due to the singular value decay

structures shown in Fig. 4.2 where decay stops after about 200 singular values. The only

significant difference in the used ranks between each of these methods given the same

50



ξ is that the DMD always uses a lower rank than the POD and DMD-E. This is an

artifact of the centering and equilibrium-subtraction operations done on the databases

prior to the calculation of each SVD for the POD and DMD-E. Here these operations only

significantly decreased the first and second singular values of each matrix. This has the

effect of reducing only the denominator of Eq. 3.12 for all k > 1 and therefore inflating

the rank required to satisfy a given ξ.

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac
10−2 6 7 6 6 7 9 5

10−4 28 30 28 28 30 30 25

10−6 43 44 44 43 46 46 42

10−8 90 79 100 87 111 111 61

10−10 138 136 142 139 148 147 112

10−12 168 165 170 169 175 175 147

10−14 195 194 196 196 199 199 173

10−16 286 286 287 287 292 291 274

10−18 299 299 299 299 299 299 299

Table 4.2: Ranks k for each approximate database corresponding to different values of ξ
for the DMD

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac
10−2 14 16 15 15 14 16 14

10−4 34 36 34 34 36 35 34

10−6 48 49 51 48 62 64 48

10−8 114 109 119 114 125 127 85

10−10 151 148 154 152 158 157 131

10−12 179 177 180 179 184 183 160

10−14 203 202 204 204 207 206 186

10−16 298 298 298 298 298 298 298

Table 4.3: Ranks k for each approximate database corresponding to different values of ξ
for the DMD-E
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Figure 4.3: Plotted ranks k for each approximate database corresponding to different
values of ξ using the POD, DMD & DMD-E (see Tabs. 4.1 - 4.3)
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4.4.3 Convergence of ROM Solutions

How (and if) the DET solution of the F-C test converges to the reference FOM solution

is now analyzed. Figs. 4.4, 4.5 and 4.6 show the relative error (w.r.t. the FOM solution)

for the material temperature (T ) and total radiation energy density (E) calculated in

the 2-norm over space at each instant of time in t ∈ [0, 6ns] where each unique curve

corresponds to the ROM solution generated for a given value of ξ.

(a) Material Temperature (b) Radiation Energy Density

Figure 4.4: Relative errors in the 2-norm of the DET ROM using the POD for several ξ,
plotted vs time

(a) Material Temperature (b) Radiation Energy Density

Figure 4.5: Relative errors in the 2-norm of the DET ROM using the DMD for several ξ,
plotted vs time
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(a) Material Temperature (b) Radiation Energy Density

Figure 4.6: Relative errors in the 2-norm of the DET ROM using the DMD-E for several
ξ, plotted vs time

Considering first the ROM using the POD, Fig. 4.4 demonstrates a uniform convergence

of errors in time as ξ is decreased. The error curves all behave similarly in time as well,

first increasing in the rapidly evolving physical regime of wave evolution followed by

stabilization to the neighborhood of some value for times after roughly 0.5ns. The highest

observed errors are on the order of 10−4, corresponding to the ROM with ξ = 10−2. When

ξ = 10−16, the POD ROM invokes a full-rank representation of the Eddington tensor

data and finds errors on the order of 10−15, successfully obtaining the FOM solution to

numerical precision. Next looking at the ROM using the DMD, Fig. 4.5 shows uniform

convergence of the ROM errors in time for ξ decreasing until ξ = 10−12. Further decreases

in ξ have the effect of decreasing errors while t > 2.5ns and increasing errors for t < 2.5ns.

The lowest errors for a single value of ξ exist on the order of 10−12 − 10−10. These effects

are attributed to numerical noise, of which the DMD has known susceptibility to [37, 133].

Results for ξ = 10−18 are not shown here as there is no significant change from those

seen for ξ = 10−16. The highest errors observed with the DMD are on the order of 10−2

for ξ = 10−2, 2 orders of magnitude higher than observed for the POD with the same

ξ. Lastly, the ROM using the DMD-E suffers from an amplified sensitivity to high-rank

approximations compared to the ROM with the DMD. Errors shown in Fig. 4.6 are seen

to converge up until ξ = 10−10, after which further decreases in ξ lead to increases in the

ROM errors. This effect is primarily observed for the early time instances of the problem.

In contrast, the later times tend to stagnate at the same level of error as ξ decreases.

54



A different view of the data presented in Figs. 4.4 - 4.6 is given in Figs. 4.7, 4.8

and 4.9. These plots graph the ROM errors (w.r.t. the FOM solution) in the relative

2-norm against ξ, with each curve corresponding to a specific instant in time. This view

is provided to enhance the clarity in which convergence behavior is assessed. Let the

errors of each ROM be written as the function ε(x) = ‖xFOM−xROM‖2
‖xFOM‖2

. From Fig. 4.7, it is

immediately evident that the errors associated with the POD ROM have the relationship

ε(E) ≈ ε(T ) ≈ ξ · 10−2 up to the point where stagnation occurs from limitations of the

finite precision of calculations. Fig. 4.8 shows a similar relationship for the DMD ROM,

with ε(E) ≈ ε(T ) ≈ ξ for ξ ≥ 10−8. A decrease in the rate of convergence is observed for

ξ < 10−8 with this ROM before stagnation occurs around an order of 10−12 − 10−10. This

slow in convergence rate is attributed again to an increase in numerical noise as rank is

increased.

(a) Material Temperature (b) Radiation Energy Density

Figure 4.7: Relative errors in the 2-norm of the DET ROM using the POD at several
times, plotted vs ξ

Lastly considering the DMD-E ROM, Fig. 4.9 demonstrates more clearly the observed

numerical sensitivity for small ξ. An initial increase in error level is seen at times t = .02, 1

ns for ξ = 10−10, and the errors at t = 2 ns increase at ξ = 10−12. This behavior is

accredited to a large magnification of numerical errors as seen with the DMD. The DMD-E

can be interpreted as the DMD on a set of residual vectors representing the distance of the

expanded data to the near steady-state solution. The residual vectors for near steady-state

data are then expected to have elements of very small magnitude which can contribute
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to numerical issues in the decomposition. This combined with the inherent sensitivity

of the DMD to numerics can lead to large amplifications of error. This interpretation

also gives justification to the behaviors seen in Fig. 4.6. The exponentials in Eq. 3.22

are expected to decrease toward zero as time moves onward so that the ‘steady-state’

solution is only represented by the constant term. Any amount of noise introduced into

the DMD-E expansion will become less prevalent as t grows and the exponentials shrink.

(a) Material Temperature (b) Radiation Energy Density

Figure 4.8: Relative errors in the 2-norm of the DET ROM using the DMD at several
times, plotted vs ξ

(a) Material Temperature (b) Radiation Energy Density

Figure 4.9: Relative errors in the 2-norm of the DET ROM using the DMD-E at several
times, plotted vs ξ
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The results presented up this point indicate that when equipped with methods like

the POD and DMD, the DET class of ROMs can successfully and predictably converge to

the FOM solutions they were trained on. This property is not exhibited with use of the

DMD-E. Even so, in every case the DET ROMs are shown to perform well with low-rank.

So far this analysis has restricted itself to the 2-norm of errors in space. What remains

now is to analyze the characteristics of the ROM errors from the FOM solution locally

in space. Here consideration is only done for ξ = 10−2, 10−4, as these lowest-rank ROMs

are the most practical for applied use and are subject to the highest errors. Figs. 4.10,

4.11 and 4.12 show the spatially local relative errors in T and E at select instances of

time. Each of these figures takes the form of two tables that display the relative pointwise

error in the DET ROM across the spatial domain of the F-C test. The first (top) table

shows errors in the material temperature (T ) and the second (bottom) shows errors in

the total radiation energy density (E). Each row corresponds to a different value of ξ and

each column to the specific instant of time. The selected time instances are t = 1, 2, 3 ns,

respectively. None of the other instances in t ∈ [0, 6ns] differ greatly from those shown,

in fact the color scale shown to the right of each row depicts the entire range of values

for all time instances. Each plot makes it apparent that the spatial distribution of errors

in those low-rank ROMs is relatively uniform. The values of all spatial errors reside in

a close neighborhood to the relative 2-norm collective errors associated with the given

ROM and instant of time (ref. Figs. 4.4 - 4.6).
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Figure 4.10: Cell-wise relative error in material temperature (T ) and total radiation
energy density (E) over the spatial domain at times t=1, 2, 3 ns for the DET ROM
equipped with the POD for ξ = 10−2, 10−4.
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Figure 4.11: Cell-wise relative error in material temperature (T ) and total radiation
energy density (E) over the spatial domain at times t=1, 2, 3 ns for the DET ROM
equipped with the DMD for ξ = 10−2, 10−4.
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Figure 4.12: Cell-wise relative error in material temperature (T ) and total radiation
energy density (E) over the spatial domain at times t=1, 2, 3 ns for the DET ROM
equipped with the DMD-E for ξ = 10−2, 10−4.
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4.5 Reproduction of Physical Quantities

Now that the error analysis of the DET ROMs is complete, what remains is to investigate

how well these ROMs capture the physics of their target class of problems. The F-C test

mimics the class of supersonic radiation shock problems and experiments [144, 145, 146,

147], with radiation flowing from the high-temperature ‘drive’ at the left boundary to the

‘cold’ right boundary. In these applications, the breakout time of radiation is a particularly

important physical quantity or measurement. Typically in the literature, breakout time

is measured as the elapsed time until a certain level of radiative flux is detected coming

from the material through which radiation is driven [144, 146, 147]. This is an integral

measurement of many physical effects and as such if the DET ROMs can successfully

reproduce the FOM breakout time(s) for the F-C test, combined with the results from

Sec. 4.4.3, the ROMs can be said to correctly reproduce (i) the radiation wavefront, (ii)

the speed at which the wavefront propagates. This does not, however, give indication

of how well the DET ROMs can recreate the correct spectrum of radiation. A separate

analysis must be done to investigate this element of the physics, presented in Sec. 4.5.2.

4.5.1 Modeling of Radiation Wave Breakout

To give a more complete picture not only will the radiation flux (F ) be analyzed, but

also the radiation energy density (E) and material temperature (T ) present at the right

boundary of the F-C test. Let the boundary-averages of these quantities be

F̄R =
1

LR

∫ LR

0

ex · F (xR, y) dy, (4.11)

ĒR =
1

LR

∫ LR

0

E(xR, y) dy, (4.12)

T̄R =
1

LR

∫ LR

0

T (xR, y) dy, (4.13)

where LR = xR = 6cm. Fig. 4.13 plots the FOM solution of these quantities vs time. T̄R

smoothly increases in value between approximately t ∈ [0, 3ns], after which it plateaus

at around 0.45 KeV. F̄R and ĒR on the other hand evolve with two sharp increases

in value followed by plateaus. The initial increase of these values for t ∈ [0, 0.5ns] is

indicative of when the high energy radiation has penetrated across the domain. The

second increase in value between roughly t ∈ [2, 2.5ns] corresponds to when the radiation
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Figure 4.13: Total radiation flux (F̄R), total radiation energy density (ĒR) and material
temperature (T̄R) averaged over the right boundary of the spatial domain plotted vs time.
Shown solutions are generated by the FOM.
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Figure 4.14: Relative error for the DET ROMs with ξ = 10−2 for data located at and
integrated over the right boundary of the domain.
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Figure 4.15: Relative error for the DET ROMs with ξ = 10−4 for data located at and
integrated over the right boundary of the domain.
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in more optically-thick frequency groups has penetrated the domain.

Figs. 4.14 and 4.15 plot the relative error in F̄R, ĒR, and T̄R produced by the DET

ROMs (w.r.t. the FOM solution) using the POD, DMD and DMD-E with low rank

corresponding to ξ = 10−2, 10−4. Each quantity is reproduced to a similar order of

accuracy as was seen in Figs. 4.4 - 4.6. The DMD ROM has the highest errors for all

quantities while the POD and DMD-E show similar levels of accuracy to one another.

The error levels tend to oscillate about some value for the entire temporal range, with the

exception of T̄R in the case ξ = 10−4. These errors begin at a level roughly an order of

magnitude lower than observed for ĒR and F̄R, and increase to a similar level of ĒR and

F̄R at around t = 2.5 ns. This is the point where optically-thick radiation is demonstrated

to penetrate the test domain (ref. Figs. 4.13). Radiation at these frequencies has the most

impact on energy redistribution and therefore the material temperature, and these effects

could contribute to the increase in error. Although not shown, this same effect is seen for

ξ < 10−4 as well.
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Figure 4.16: Relative errors of the DET ROM solution for F̄R using the POD plotted vs
time and ξ

If the DET ROMs (with ξ = 10−2, 10−4) were to predict the breakout time of radiation

based on when any of F̄R, ĒR, or T̄R reach a certain arbitrary value in their ranges,

the predicted time should be accurate to the levels shown in Figs. 4.14 and 4.15. If the

convergence behaviors of these quantities to the FOM solution are comparable to those

shown in Figs. 4.7 - 4.9 then the order of accuracy can be predicted based on ξ if using

63



the POD or DMD. Fig. 4.16 confirms this predictive capability. This figure shows the

relative error in the DET solution (using the POD) for F̄R plotted vs. both time and ξ.

The results are akin to those shown for the relative 2-norm errors in E and T over the

spatial domain. Similar results are found for the DMD ROM.

4.5.2 Radiation Spectrum

The final component of TRT physics to consider in this analysis is the spectrum of radiation.

Thus far investigations have been restricted to integral quantities, shielding the group

structure of obtained DET solutions from exposure. The goal here is to demonstrate that

these ROMs can well preserve not just integral quantities but also the frequency-dependent

structure of the problems they solve.

Fig. 4.17 plots the frequency spectrum of radiation energy densities (Eg) for the F-C

test obtained by the FOM. Each plot graphs the radiation energy densities vs photon

energy for a select point in the spatial domain and several instants of time (each curve

represents a different temporal point). Plots on the left hand side show the entire frequency

spectrum, and plots on the right are zoomed in to show the radiation peak with higher

resolution. Note that these zoomed-in plots only disregard the final point in the spectrum.

Each point is located at the center of a discrete energy group (see Tab. D.1) on the

frequency-axis, and the value it takes on is the group-averaged radiation energy density

Ēg = Eg
νg−νg−1

. The chosen spatial points include (i) the midpoint of the domain, (ii) the

midpoint of the right boundary, (iii) the bottom corner of the right boundary (since

the F-C test is y-symmetric, the top and bottom corners are equivalent). These points

were chosen as an illustration of different levels of transport effects, with large variations

in anisotropy of radiation. The instants of time were chosen based off of Fig. 4.13 to

sufficiently sample temporal regions of interest.

Figs. 4.18, 4.19 and 4.20 plot the relative errors of the average multigroup radiation

energy densities produced by the DET ROMs using the POD, DMD and DMD-E,

respectively, all with ξ = 10−2. The ‘zoomed’ view of the frequency spectrum is used here

to make the plots more readable, noting that the relative errors for the last frequency

group do not significantly deviate from the errors of the final few groups. Figs. 4.21, 4.22

and 4.23 show this same data for solutions found with ξ = 10−4. In all cases, the corner

point has the highest levels of deviation from the FOM solution. The domain midpoint

also displays the lowest levels of error. The degradation in accuracy for the DET ROMs as

anisotropy increases is predominantly found in low-energy groups, whereas the groups that
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Ē
g
 (e

rg
·1

0
13

cm
3
H
z

)

0.02ns
0.20ns
0.50ns
1.00ns
2.00ns
3.00ns

(a) y = 3cm, x = 3cm

103 104

photon energy (ν) (ev)

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Ē
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Figure 4.17: Radiation energy density spectrum located at (i) the domain midpoint, (ii)
the midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances. The plots on the right show a zoomed in view of the spectrum peak.
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make up the majority of radiation in the problem are generally found with an accuracy

similar to what is seen for the total radiation energy density (E) in the 2-norm over space.

Furthermore, the error associated with low-energy groups is worst in the early times of

the problem where very little radiation in those energy ranges has been able to propagate

across the domain (see Fig. 4.17).

The accuracy of the multigroup radiation energy densities can be related to ξ just as

was done for the total radiation energy densities. Figs. 4.18 - 4.23 demonstrate that these

errors decrease by roughly an order of 102 across all photon energies when ξ is decreased

from 10−2 → 10−4 for all considered time instances. A more complete picture of how

these errors behave with ξ is given in Figs. 4.24, 4.25 and 4.26. These plots provide an

integral view of the spectral errors in the DET ROM solutions; each depicts the relative

spectral error in the 2-norm and infinity-norm across the interval t ∈ [0, 6ns] for the three

chosen points in space. Results are shown only for the DET ROM equipped with the

POD and for the entire considered range of ξ. In the 2-norm sense and before the limits

of finite precision become dominant, the errors at each spatial point do not exceed ξ. In

the infinity norm these errors are only slightly elevated, with the largest increase being

seen in the first frequency group. When the DMD is used instead of the POD, similar

results are found with expected elevation of error levels for each ξ.

This concludes the primary evaluation of the DET class of ROMs without parameter-

ization. The results shown here provide compelling evidence of the ROMs’ abilities to

capture full-order solutions with high accuracy. These results demonstrate that the DET

ROMs converge sufficiently uniformly with ξ, such that in practice the choice of ROM can

be informed with a prediction of accuracy that directly corresponds to the specified value

for ξ. Parameterization of these ROMs is well justified and is provided in the following

section.
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Figure 4.18: Relative errors of the radiation spectrum produced by the DET ROM with
the POD for ξ = 10−2 located at (i) the domain midpoint, (ii) the midpoint of the right
boundary, (iii) the corner of the right boundary, taken at several time instances.

103 104

photon energy (ν) (ev)

10-4

10-2

100

102

|E
F
O
M
−
E
R
O
M
|

|E
F
O
M
|

0.02ns
0.20ns
0.50ns
1.00ns
2.00ns
3.00ns

(a) y = 3cm, x = 3cm

103 104

photon energy (ν) (ev)

10-4

10-2

100

102

|E
F
O
M
−
E
R
O
M
|

|E
F
O
M
|

0.02ns
0.20ns
0.50ns
1.00ns
2.00ns
3.00ns

(b) y = 3cm, x = 6cm

103 104

photon energy (ν) (ev)

10-4

10-2

100

102

|E
F
O
M
−
E
R
O
M
|

|E
F
O
M
|

0.02ns
0.20ns
0.50ns
1.00ns
2.00ns
3.00ns

(c) y = 0cm, x = 6cm

Figure 4.19: Relative errors of the radiation spectrum produced by the DET ROM with
the DMD for ξ = 10−2 located at (i) the domain midpoint, (ii) the midpoint of the right
boundary, (iii) the corner of the right boundary, taken at several time instances.
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Figure 4.20: Relative errors of the radiation spectrum produced by the DET ROM with
the DMD-E for ξ = 10−2 located at (i) the domain midpoint, (ii) the midpoint of the
right boundary, (iii) the corner of the right boundary, taken at several time instances.
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Figure 4.21: Relative errors of the radiation spectrum produced by the DET ROM with
the POD for ξ = 10−4 located at (i) the domain midpoint, (ii) the midpoint of the right
boundary, (iii) the corner of the right boundary, taken at several time instances.
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Figure 4.22: Relative errors of the radiation spectrum produced by the DET ROM with
the DMD for ξ = 10−4 located at (i) the domain midpoint, (ii) the midpoint of the right
boundary, (iii) the corner of the right boundary, taken at several time instances.
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Figure 4.23: Relative errors of the radiation spectrum produced by the DET ROM with
the DMD-E for ξ = 10−4 located at (i) the domain midpoint, (ii) the midpoint of the
right boundary, (iii) the corner of the right boundary, taken at several time instances.
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Figure 4.24: Relative errors of the radiation spectrum produced by the DET ROM with
the POD located at the domain midpoint in the 2-norm and ∞-norm along the temporal
interval t ∈ [0, 6ns]
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Figure 4.25: Relative errors of the radiation spectrum produced by the DET ROM with
the POD located at the midpoint of the right boundary in the 2-norm and ∞-norm along
the temporal interval t ∈ [0, 6ns]
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Figure 4.26: Relative errors of the radiation spectrum produced by the DET ROM with
the POD located at the corner of the right boundary in the 2-norm and ∞-norm along
the temporal interval t ∈ [0, 6ns]

4.6 Parameterization of the DET ROMs

In this section a parameterization of the DET ROMs is analyzed using the single parameter

ϑ = T in. The space of considered parameter values is set to the interval Θ ≡ [0.5, 1.5KeV].

The interpolation function I(ϑ) (see Eq. 4.9) is set to a natural cubic spline. Two uniformly

sampled grids in Θ are used to determine the points {T in
i }

Nϑ
i=1 where the FOM is invoked

to generate the necessary high-order data for the ROM offline stage. The chosen grids

are displayed in Tab. 4.4, using Nϑ = 5, 9. In this way {T in
i }

Nϑ=5
i=1 ⊂ {T in

i }
Nϑ=9
i=1 and the

9-point grid halves the distance between each T in
i compared to the 5-point grid.

The interval of T in ∈ [0.5, 1.5KeV] is chosen as a difficult stress-test for the DET ROMs.

This interval is a large one, covering 1 KeV of change between the possible values of the

boundary temperature (or radiation drive). The F-C test’s physics change considerably

over this range. For instance, the spectrum of radiation formed by the left-boundary

condition has its peak at ν = 2.82T in. Therefore the bulk of radiation that forms the

wavefront propagating through the test domain varies over a 1 KeV range as well. Different

portions of this range will result in distinct, separate physical characterizations of the F-C

test in space-time. When T in = 1.5KeV, the problem will be dominated by high-energy

radiation in the streaming regime. In contrast, when T in = 0.5KeV the F-C test will be

dominated by low-frequency radiation close to the diffusive regime.
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i T in
i (KeV)

1 0.5
2 0.75
3 1.0
4 1.25
5 1.5

(a) 5 pts

i T in
i (KeV)

1 0.5
2 0.625
3 0.75
4 0.875
5 1.0
6 1.125
7 1.25
8 1.375
9 1.5

(b) 9 pts

Table 4.4: Uniformly sampled points for T in in the range T in ∈ [0.5, 1.5 KeV] with 5 and
9 points

It is worth noting that in the parameterized case, the only additional source of error

to the DET ROM solution compared to the non-parameterized case comes from I(ϑ).

As such for any well-chosen interpolation function and a fine enough grid in ϑ, the DET

ROM’s behavior will be the same as shown in Sec. 4.4. In practice coarse parameter

grids are desirable, and it is most important to identify I(ϑ) that can introduce errors

on the level less than observed for the non-parameterized DET ROMs with low rank

(ξ = 10−2, 10−4). In this way the parameterized DET ROM can produce solutions for

unsampled parameter values with similar levels of error as for the non-parameterized case

with low rank. Two different natural cubic spline interpolation functions are investigated

here: I(T in) and I((T in)−3). The first interpolation function is considered as a simple

baseline one. The latter is selected based on a dimensionless analysis of the grey TRT

problem using the F-C opacity function, which is detailed in Appendix E. The results

of this analysis demonstrate proportionality of the grey F-C opacity to the inverse cube

of temperature. These results also show that the grey F-C TRT solution scales with the

inverse cube of the characteristic temperature for a given problem, which we define as T in

The parameterized DET ROMs using the grids shown in Tab. 4.4 to create the full-

order databases (in the offline stage) are evaluated (with the online stage) at the points

shown in Tab. 4.5. Each test point is chosen to be equidistant from its closest two points

on the respective sampling grid. This will effectively evaluate the DET ROMs along the

entire considered range of T in at the parameter values that should be the hardest to

simulate given the uniformly sampled grids. In the following analysis, only the POD is
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i T in
i (KeV)

1 0.625
2 0.875
3 1.125
4 1.375

(a) 5 pt grid

i T in
i (KeV)

1 0.5625
2 0.6875
3 0.8125
4 0.9375
5 1.0625
6 1.1875
7 1.3125
8 1.4375

(b) 9 pt grid

Table 4.5: Test points for T in to evaluate the paramterized DET ROMs using FOM
sample points on the grids in Tab. 4.4 in the range T in ∈ [0.5, 1.5 KeV] with 5 and 9
points

considered to project the full-order databases and only with values ξ = 10−2, 10−4. The

POD has proven to be the best performing method of data compression to be used with

the DET ROMs, and low-rank ROMs are the most important in parametric applications.

Figs. 4.27 and 4.28 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using the 5-point grid in T in and ξ = 10−2. Errors are plotted vs. time. Fig. 4.27

shows results for the model using I(T in) and Fig. 4.27 shows results for the model using

I((T in)−3). Each curve corresponds to the ROM solution at one of the test points defined

in Tab. 4.5 for the 5-point grid. All errors are calculated with respect to the FOM solution

evaluated at the same value for T in as the ROM (i.e. at each test point). Here the ROM

using I((T in)−3) has higher accuracy than the ROM using I(T in) for each considered

boundary temperature over the entire time range. With I(T in), the ROM errors increase

as T in decreases. A similar effect is seen for the ROM using I((T in)−3), although all test

values for T in are captured with errors less than 10−3 except for when T in = 0.625 KeV,

where the errors are bounded by 10−2. Figs. 4.29 and 4.30 plot the same data as the

previous figures, but for the ROMs using ξ = 10−4. The results are largely the same for

this case as was seen for ξ = 10−2, only with less oscillatory behavior.
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Figure 4.27: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I(T in) defined for
the values shown in Tab. 4.4 for Nϑ = 5. Errors are plotted vs. time
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Figure 4.28: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.4 for Nϑ = 5. Errors are plotted vs. time
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Figure 4.29: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I(T in) defined for
the values shown in Tab. 4.4 for Nϑ = 5. Errors are plotted vs. time
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Figure 4.30: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.4 for Nϑ = 5. Errors are plotted vs. time
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Figs. 4.31 and 4.32 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using the 9-point grid in T in and ξ = 10−2. Fig. 4.31 shows results for the model

using I(T in) and Fig. 4.32 shows results for the model using I((T in)−3). Each curve

corresponds to the ROM solution at one of the test points defined in Tab. 4.5 for the

9-point grid. All errors are calculated with respect to the FOM solution evaluated at the

same value for T in as the ROM (i.e. at each test point). For values of T in > 1 KeV, all

errors can be considered the same as for the non-parameterized case using ξ = 10−2 with

the POD (see Fig. 4.4). The values of T in < 1 KeV are more difficult to capture, and

as seen for the 5-point grid the ROM errors increase as T in decreases. However, using

I((T in)−3) yields lower error levels than I(T in) for all tested T in < 1 KeV except for

T in = 0.5625 KeV where both models find similar accuracy.

Next Figs. 4.33 and 4.34 plot the same error data as shown in the previous two plots

for the 9-point grid, but using ξ = 10−4 instead of ξ = 10−2. Once again the former plot

uses I(T in) while the latter uses I((T in)−3). Here the lowest errors are on the order of

10−5, found for large T in. Smaller values of T in are still only accurate to order 10−3− 10−2.

With the exception of the smallest tested T in (T in = 0.5625 KeV), the model using

I((T in)−3) performs better than the model with I(T in) in every other case. The ROM

with I((T in)−3) is able to reproduce the FOM solution for the F-C test for all considered

T in > 1 KeV with errors levels less than 10−4.
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Figure 4.31: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I(T in) defined for
the values shown in Tab. 4.4 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.32: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.4 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.33: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I(T in) defined for
the values shown in Tab. 4.4 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.34: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.4 for Nϑ = 9. Errors are plotted vs. time
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4.6.1 Sampling Data in the Inverse Cube of Temperature

The results so far demonstrate that interpolating over the parameter T in using a function

of (T in)−3 performs well for parameterization, and better than using a function of T in.

However, the parameterized ROM’s accuracy is seen to decrease by 2-3 orders of magnitude

when T in decreases from 1.5 KeV towards 0.5 KeV. This effect could be attributed to the

use of a uniformly sampled grid in T in to define the interpolation function I, instead of

one uniformly sampled in (T in)−3. Tab. 4.6 provides the grid points for {T in
i }

Nϑ
i=1 using

Nϑ = 5, 9 found by uniformly sampling (T in)−3 in the interval T in ∈ [0.5, 1.5 KeV]. Note

that these grid points are much more clustered in the low-temperature range of the

interval than those shown in Tab. 4.4.

i T in
i (KeV)

1 0.5
2 0.54807497
3 0.6223699
4 0.76630943
5 1.5

(a) 5 pts

i T in
i (KeV)

1 0.5
2 0.52183923
3 0.54807497
4 0.58053476
5 0.6223699
6 0.67965488
7 0.76630943
8 0.92303688
9 1.5

(b) 9 pts

Table 4.6: Uniformly sampled points along (T in)−3 in the range T in ∈ [0.5, 1.5 KeV] with
5 and 9 points

The offline phase of the DET ROM can now consist of finding FOM solutions to the

F-C test at T in values shown in Tab. 4.6. Then the DET ROMs can be evaluated at test

points in the considered interval. Tab. 4.7 gives the set of T in values that are equidistant

(in the inverse cubic sense) from each point in the 5- and 9-point grids in Tab. 4.6. One

possible issue with this set of test points is that with a single exception, only the first half

of the considered parameter space is tested. In the following analysis, the parameterized

DET ROM interpolating with I((T in)−3) defined on the grids in Tab. 4.6 will be tested

on the values for T in defined both in Tabs. 4.7 and 4.5. In this way, the entire interval

can be more sufficiently investigated and models with grids sampled over both T in and
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(T in)−3 can be compared at the same test points.

i T in
i (KeV)

1 0.52183923
2 0.58053476
3 0.67965488
4 0.92303688

(a) 5 pt grid

i T in
i (KeV)

1 0.51045317
2 0.53431434
3 0.56337245
4 0.6
5 0.64849932
6 0.71781683
7 0.83129526
8 1.08738037

(b) 9 pt grid

Table 4.7: Test points for T in to evaluate the parameterized DET ROMs using FOM
sample points on the grids in Tab. 4.6 in the range T in ∈ [0.5, 1.5 KeV] with 5 and 9
points

Figs. 4.35 and 4.36 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using the 5-point grid in (T in)−3 and ξ = 10−2. Errors are plotted vs. time. Both

figures display results using the interpolation function I((T in)−3) defined by the points in

Tab. 4.6. Fig. 4.35 shows results for the model evaluated at the test points in Tab. 4.5

and Fig. 4.36 shows results for the model evaluated at the test points in Tab. 4.7. Each

curve corresponds to the ROM solution at one of the respective test points, and errors are

calculated with respect to the FOM solution evaluated at the same value for T in as the

ROM (i.e. at each test point). This same set of error plots for these models using ξ = 10−4

instead of ξ = 10−2 is depicted in Figs. 4.37 and 4.38. For both values of ξ the error plots

are mostly the same, save for some extra small oscillations when ξ = 10−2. The only

significant difference is the error at the point T in = 0.625 KeV decreases when ξ = 10−4

compared to ξ = 10−2. T in = 0.625 KeV also has the best accuracy while ξ = 10−2 for all

test values. This is in part due to how close T in = 0.625 KeV is to one of the grid points

used to define I((T in)−3) when Nϑ = 5 (ref. Tab. 4.6). At the other test points defined in

Tab. 4.5, this model shows lower accuracy than for the one whose interpolation function

is defined by uniform points in T in (ref. Figs. 4.28 & 4.30). Considering the test points

found for the (T in)−3 grid, the errors in time are similar for all test T in. Importantly,
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errors are not seen to increase as T in decreases.
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Figure 4.35: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 5. Errors are plotted vs. time
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Figure 4.36: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.7 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 5. Errors are plotted vs. time

80



0 1 2 3 4 5 6
Time (ns)

10-5

10-4

10-3

10-2

10-1

||T
F
O
M
−
T
R
O
M
|| 2

||T
F
O
M
|| 2

0.625kev
0.875kev

1.125kev
1.375kev

(a) Material Temperature

0 1 2 3 4 5 6
Time (ns)

10-5

10-4

10-3

10-2

10-1

||E
F
O
M
−
E
R
O
M
|| 2

||E
F
O
M
|| 2

0.625kev
0.875kev

1.125kev
1.375kev

(b) Radiation Energy Density

Figure 4.37: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 5. Errors are plotted vs. time
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Figure 4.38: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.7 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 5. Errors are plotted vs. time
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Figs. 4.39 and 4.40 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using the 9-point grid in (T in)−3 and ξ = 10−2. Both figures display results using

the interpolation function I((T in)−3) defined by the points in Tab. 4.6. Figure 4.39 shows

results for the model evaluated at the test points in Tab. 4.5 and Fig. 4.40 shows results

for the model evaluated at the test points in Tab. 4.7. Each curve corresponds to the

ROM solution at one of the respective test points, and errors are calculated with respect

to the FOM solution evaluated at the same value for T in as the ROM. This same set of

error plots for these models using ξ = 10−4 instead of ξ = 10−2 is depicted in Figs. 4.41

and 4.42.

When ξ = 10−2, the errors for all tested T in < 1 Kev are on the order of 10−4. As T in

progress beyond 1 KeV, there is some slight elevation in the error levels. Notably, the

errors for T in < 1 Kev are on the expected level for the non-parameterized DET ROMs

with the POD using ξ = 10−2 (see Fig. 4.4). This is an improvement from the models that

sampled FOM solutions uniformly in T in (ref. Fig. 4.32). When ξ is decreased to ξ = 10−4,

error levels decrease for T in < 1 Kev while staying essentially the same for T in > 1 Kev.

This is the opposite behavior as observed for the models defined in the previous section.

While test points for T in < 1 Kev are found with accuracy on the order of 10−4 at most,

those for higher temperatures remain elevated on order 10−3.

Clearly the accurate reproduction of the F-C test solution for T in < 1 Kev benefits

from sampling along the inverse cube of T in. This makes sense given that interpolating over

(T in)−3 yields better accuracy than for interpolation over T in. This is not the case however,

for T in > 1 Kev when the problem becomes more heavily driven by high-frequency

radiation with very low optical thickness. One possible reason could be that the sampled

points in Tab. 4.7 do not sufficiently cover this area in the parameter space. One appealing

idea would be to sample T in < 1 Kev by a inverse cubic relationship, and sample T in > 1

Kev linearly with T in.
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(b) Radiation Energy Density

Figure 4.39: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.40: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.7 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.41: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.5 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 9. Errors are plotted vs. time
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Figure 4.42: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.7 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.6 for Nϑ = 9. Errors are plotted vs. time
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4.6.2 Separated Low & High Energy Sampling

In this section a sampling scheme is presented for use with the interpolation function

I((T in)−3) that selects points independently for the two subintervals T in ∈ [0.5, 1.0 KeV]

and T in ∈ [1.0, 1.5 KeV]. The results shown previously demonstrate that sampling along

the inverse cube of T in gives good results for the low-energy portion of the interval, and

sampling along T in linearly gives better results for the high-energy portion. Furthermore,

the points below T in = 1 KeV tend to require a finer sampling grid than the points above

T in = 1 KeV to achieve similar levels of accuracy (with their respective well-performing

sampling schemes).

A sampling scheme that can provide uniform accuracy for the parameterized DET

ROMs across the whole interval T in ∈ [0.5, 1.5 KeV] should then handle both half-intervals

differently. The scheme presented here utilizes uniform sampling over T in ∈ [0.5, 1.0 KeV]

in the inverse cubic sense, and uniform sampling over T in ∈ [1.0, 1.5 KeV] in the linear

sense. Furthermore, since the high-energy subinterval can have a coarser sampled grid, for

N sampled points between T in ∈ [1.0, 1.5 KeV] there are defined 2N − 1 sampled points

between T in ∈ [0.5, 1.0 KeV]. Every grid will share the three points T in = 0.5, 1, 1.5

KeV.

Tab. 4.8 presents the sampled points in T in for this scheme with 2 levels of refinement.

A grid with Nϑ = 7 is presented, where 3 points are used to sample the high-energy

subinterval and 5 points are used in the low-energy subinterval. The second grid with

Nϑ = 13 uses 5 and 9 points in the high and low energy subintervals, respectively. The

test points where the parameterized DET ROMs will be evaluated for error analysis

are shown in Tab. 4.9. These test points are defined to be equidistant between each

adjacent sampling point in the inverse cubic and linear senses for the low and high energy

subintervals, respectively.

Figs. 4.43 and 4.44 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using ξ = 10−2 and ξ = 10−4 respectively at the 7-point grid test points shown

in Tab. 4.9. In both cases the interpolation function I((T in)−3) is used, defined for the

sampled points in the 7-point grid shown in Tab. 4.8. The error levels for both T and

E at every tested value for T in are bounded by roughly 2 × 10−3 and reside in a close

interval to one another at each instant of time. The tested values for T in > 1 KeV have

greater accuracy than those values for T in < 1 KeV in general during the interval t ≥ 1

ns with the exception of T in = 0.811 KeV. For ξ = 10−2 the errors vs. time are close to
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i T in
i (KeV)

1 0.5
2 0.54288352
3 0.60570686
4 0.71376586
5 1.0
6 1.25
7 1.5

(a) 7 pts

i T in
i (KeV)

1 0.5
2 0.51968284
3 0.54288352
4 0.57087432
5 0.60570686
6 0.65097453
7 0.71376586
8 0.81096027
9 1.0
10 1.125
11 1.25
12 1.375
13 1.5

(b) 13 pts

Table 4.8: Sampling grids for T in ∈ [0.5, 1.5 KeV] with uniform sampling along (T in)−3

while T in ∈ [0.5, 1.0 KeV] and uniform sampling along T in while T in ∈ [1.0, 1.5 KeV].
Sampling is done such that if N points are sampled above 1 KeV, 2N − 1 points are
sampled below 1 KeV. A 7- and 13- point grid is shown

i T in
i (KeV)

1 0.51968284
2 0.57087432
3 0.65097453
4 0.81096027
5 1.125
6 1.375

(a) 7 pt grid

i T in
i (KeV)

1 0.5094617
2 0.53077697
3 0.55617613
4 0.58726073
5 0.62671325
6 0.67949031
7 0.75620478
8 0.88606187
9 1.0625
10 1.1875
11 1.3125
12 1.4375

(b) 13 pt grid

Table 4.9: Test points for T in to evaluate the parameterized DET ROMs using FOM
sample points on the grids in Tab. 4.8 in the range T in ∈ [0.5, 1.5 KeV] with 7 and 13
points. These are the ‘midpoints’ between each sampled T in in Tab. 4.8, in the (T in)−3

sense for T in ≤ 1 KeV and in the T in sense for T in > 1 KeV
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those seen for the non-parameterized case (see Fig. 4.4), and when ξ = 10−4 these error

values decrease in the range t ≤ 2 ns.

Figs. 4.45 and 4.46 plot the relative errors in the material temperature and total

radiation energy density in the 2-norm over space produced by the parameterized DET

ROM using ξ = 10−2 and ξ = 10−4 respectively at the 13-point grid test points shown

in Tab. 4.9. In both cases the interpolation function I((T in)−3) is used, defined for the

sampled points in the 13-point grid shown in Tab. 4.8. Here the error levels across time

are the same as seen for the non-parameterized case for all tested T in when ξ = 10−2.

All error levels decrease when ξ = 10−4. The points when T in > 1 KeV are observed to

decrease somewhat uniformly in time with ξ, and the points for T in < 1 KeV decrease

more significantly at early times, increasing with time until roughly t = 3 ns where a

plateau around 10−4 is reached.
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Figure 4.43: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.9 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.8 for Nϑ = 7. Errors are plotted vs. time

0 1 2 3 4 5 6
Time (ns)

10-6

10-5

10-4

10-3

10-2

10-1

||T
F
O
M
−
T
R
O
M
|| 2

||T
F
O
M
|| 2

0.5197kev
0.5709kev

0.6510kev
0.8110kev

1.125kev
1.375kev

(a) Material Temperature

0 1 2 3 4 5 6
Time (ns)

10-6

10-5

10-4

10-3

10-2

10-1

||E
F
O
M
−
E
R
O
M
|| 2

||E
F
O
M
|| 2

0.5197kev
0.5709kev

0.6510kev
0.8110kev

1.125kev
1.375kev

(b) Radiation Energy Density

Figure 4.44: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.9 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.8 for Nϑ = 7. Errors are plotted vs. time
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Figure 4.45: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2,
evaluated at the T in values in Tab. 4.9 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.8 for Nϑ = 13. Errors are plotted vs. time

0 1 2 3 4 5 6
Time (ns)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

||T
F
O
M
−
T
R
O
M
|| 2

||T
F
O
M
|| 2

0.5095kev
0.5308kev
0.5562kev
0.5873kev

0.6267kev
0.6795kev
0.7562kev
0.8861kev

1.0625kev
1.1875kev
1.3125kev
1.4375kev

(a) Material Temperature

0 1 2 3 4 5 6
Time (ns)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

||E
F
O
M
−
E
R
O
M
|| 2

||E
F
O
M
|| 2

0.5095kev
0.5308kev
0.5562kev
0.5873kev

0.6267kev
0.6795kev
0.7562kev
0.8861kev

1.0625kev
1.1875kev
1.3125kev
1.4375kev

(b) Radiation Energy Density

Figure 4.46: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4,
evaluated at the T in values in Tab. 4.9 with the interpolation function I((T in)−3) defined
for the values shown in Tab. 4.8 for Nϑ = 13. Errors are plotted vs. time
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4.7 Discussion

In this chapter a new class of ROMs for TRT is presented derived with the nonlinear-

projective methodology (see Sec. 2.1) that employs data-driven approximations for the

Eddington tensor to find closures. Analysis of these ROMs was performed in the non-

parameterized and parameterized cases. The ROMs were proven effective in efficiently

reducing dimensionality of TRT problems and shown capable of producing solutions with a

spectrum of accuracy depending on the used rank of approximation. A linear relationship

was found between the ROM solution accuracy and the rank of approximation while using

the POD and DMD, allowing for a-priori predictions of the ROM solution error levels

based on the rank parameter ξ. ROMs at low rank were shown to produce errors that

are relatively uniform across space, frequency and time. The ROMs were furthermore

able to reproduce certain important qualities with high accuracy such as the radiation

present at and traveling through the drive-opposite (right) boundary. Parameterization

was investigated for temperature of radiation at the boundary source of the numerical tests

that drives a Marshak wave. An inverse cubic parameterization in this temperature was

shown to produce solutions with relatively uniform accuracy across the entire considered

interval of temperatures.

The results and analysis of the DET ROMs encourage continued development, and

several pathways for future research can be identified. The ROM parameterization can

be extended to be multivariate, considering other parameters such as material opacities.

Other data-based methods of approximating the Eddington tensor can also be explored,

such as using methods of symmetry-reduction [148, 149] to improve basis generation or

neural networks to provide a different type of closure approximation [61, 62].
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CHAPTER

5

A ROM BASED ON ESTIMATION OF

THE EDDINGTON TENSOR FROM

DIFFUSION BASED SOLUTIONS

In this chapter a ROM is formulated with the ability to make use of data from diffusion-

type approximate models of radiative transfer such as flux-limited diffusion (FLD). An

estimation of the Eddington tensor that closes the hierarchy of LOQD moment equations

is generated using a known approximate temperature distribution in space and time

obtained by means of a diffusion-based TRT model. A linear multigroup Boltzmann

transport equation is constructed whose opacity and emission source are evaluated at

the known temperature for the whole phase space and considered interval of time. The

linear BTE can be solved with a single transport sweep at each instant of time, and the

following high-order solution well approximates the intensity shape function required to

calculate the Eddington tensor. Numerical results are shown to demonstrate the ROM’s

performance, using temperature distributions from three diffusion-type models: FLD, P1

and P1/3.

91



5.1 Fundamental Approach

ROMs for TRT such as the FLD, P1 and VEF models [14, 15, 16, 102] are well understood

and widely used for many applications. They can be used as radiative transfer models

in large-scale multiphysics simulations robustly and efficiently, although the accuracy of

their obtained solutions is limited. Over time large databases of solutions to a wide range

of problems in high-energy density physics have been amassed through these simulations.

This presents an opportunity for a new ROM to leverage this available data and generate

solutions with increased accuracy.

The formulation of this ROM is based on the idea to calculate an approximate radiation

distribution shape function in phase space and time for a given physical system using a

known temperature distribution in the domain and time interval of the problem. This

shape function is defined by the normalized radiation intensities computed with a linear

radiative transfer problem (performing just one transport sweep) where the opacities

and emission source are specified with the known temperature distribution in space-time.

This provides the shape function required in calculating the Eddington tensor which

formulates closures to the low-order moment (LOQD) equations. This model is motivated

by demonstrations that the high-order transport solution computed with a scattering

source term evaluated by a diffusion solution yields a sufficiently accurate shape function

for estimation of the Eddington tensor [150, 151].

If T̂ (r, t) ≈ T (r, t) for a TRT problem (Eqs. 1.6 & 1.10) is known for r ∈ Γ and

t ∈ [0, tend], the following linear Boltzmann problem can be formulated

1

c

∂Îg
∂t

+ Ω ·∇Îg + κE,g(T̂ )Îg = κB,g(T̂ )Bg(T̂ ), (5.1)

r ∈ Γ, Ω ∈ S, g = 1, . . . , Ng, t ∈ [0, tend],

Îg|t=t0 = I0
g , Îg|r∈∂Γ = I in

g for nΓ ·Ω < 0. (5.2)

Eq. 5.1 can be efficiently solved with a single transport sweep per time step to find the

approximate distribution of radiation intensities Îg, which will give a good estimation

for the transport effects of the original TRT problem assuming ‖T̂ − T‖ is not too large.

To obtain an ideal distribution of radiation intensities, ray tracing techniques can be

used along with the method of conservative long characteristics (see Sec. 2.3.2). Once Îg

has been calculated, an approximate Eddington tensor f̂g for the TRT problem can be

found via Eq. 2.4. The MLQD system closed with f̂g and coupled to the MEB equation
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can then be used to solve the TRT problem to find an improved update for the material

temperatures ( ˆ̂T ) and radiation field ( ˆ̂E & ˆ̂F ).

Alg. 4 outlines the process of using this proposed ROM to solve TRT problems. The

required input is an already known approximate material temperature distribution T̂

for the entire spatial and temporal interval of interest. T̂ is used to construct the linear

high-order radiative transfer problem by fixing the opacity function and emission source

in phase space and time. The approximate radiation intensities Îg are found for some set

of frequency groups and directions of motion on the spatial-temporal domain where T̂

is defined. The Eddington tensor f̂g in all defined frequency groups and the domain in

space-time is calculated using Îg in Eq. 2.4. f̂g is used to close the multilevel system of

LOQD equations coupled to the MEB equation in space-time and frequency, which is

solved for an updated material temperature distribution ˆ̂T and radiation field ˆ̂Eg,
ˆ̂F g on

the spatial and temporal intervals and frequency groups where f̂g is defined.

Algorithm 4: Construction of an improved TRT solution using a diffusion
solution to estimate the Eddington tensor that closes the LOQD moment system
over the entire considered phase space and time simultaneously.

Input: T̂ (r, t) for r ∈ Γ, t ∈ [0, tend]

1. Solve the BTE with fixed opacity and source evaluated at T̂ (r, t) for all r ∈ Γ,
t ∈ [0, tend] (Eq. 5.1) to find Îg(r,Ω, t) for r ∈ Γ, t ∈ [0, tend], Ω ∈ S, g = 1, . . . , Ng

2. Project Îg(r,Ω, t) to generate f̂g(r, t) (via Eq. 2.4) defined for r ∈ Γ, t ∈ [0, tend],
g = 1, . . . , Ng

3. Solve MLQD system closed with f̂g(r, t) and coupled with MEB (Eqs. 2.3, 2.13, &
2.20) over all r ∈ Γ, t ∈ [0, tend], g = 1, . . . , Ng

4. Extract ˆ̂T (r, t), ˆ̂Eg(r, t),
ˆ̂F g(r, t) from MLQD solution for r ∈ Γ, t ∈ [0, tend],

g = 1, . . . , Ng

Output: ˆ̂T, ˆ̂Eg,
ˆ̂F g

There are several interpretations to this methodology, henceforth referred to as the

transport-corrected approximation (TCA) ROM, depending on the chosen source of T̂ .

At its most fundamental level, the TCA ROM is a method to ‘correct’ approximate
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solutions by estimating the transport effects in the given system. If T̂ is found from a set

of experimentally obtained data, or sparse/gappy data, then this method can instead be

seen as a sophisticated interpolation/extrapolation procedure to generate solutions based

on select known points. Else if T̂ is found from some other ROM solution to the given TRT

problem, the proposed model is one that can enhance other ROM solutions by adding

high-order information. Another interpretation for when T̂ comes from a reduced-order

solution is as a variant of the DET ROMs (see Ch. 4) with a cheap offline phase.

In this study only the case where T̂ comes from the solution of a radiative transfer

ROM. Specifically, the ROMs considered for this purpose are the multigroup P1 and P1/3

models [14], and a select FLD model.

5.1.1 The Flux Limited Diffusion Model

With a multigroup FLD model, the TRT problem (Eqs. 1.6 & 1.10) is approximated by

the following system

∂Eg
∂t

+ ∇ · (Dg(T,Eg)∇Eg) + cκE,g(T )Eg = 4πκB,g(T )Bg(T ), (5.3)

∂ε(T )

∂t
=

Ng∑
g=1

(
cκE,g(T )Eg − 4πκB,g(T )Bg(T )

)
. (5.4)

Eq. 5.3 is the FLD equation, and Dg(T,Eg) is the flux-limited diffusion coefficient which

takes on different formulations depending on the specific FLD model. We use the form

proposed by E. Larsen [14]

Dg(T,Eg) =

[ (
3κE,g(T )

)2
+

(
1

Eg
∇Eg

)2 ] 1
2

. (5.5)

5.1.2 The P1 and P1/3 Models

The P1 model for radiative transfer [14] approximates the TRT problem (Eqs. 1.6 & 1.10)

with the following system

∂Eg
∂t

+ ∇ · F g + cκE,g(T )Eg = 4πκB,g(T )Bg(T ), (5.6a)

1

c

∂F g

∂t
+
c

3
∇Eg + κ̃R,g(T )F g = 0, (5.6b)
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coupled with the MEB equation (Eq. 5.4). The P1 equations are simply the first two

moments of the BTE that are closed with a linear-in-angle approximation for the radiation

intensities, taking the same formulation as the LOQD system (Eqs. 2.3) with fg = 1
3
I.

Here I is the identity matrix.

The P1/3 model for radiative transfer [14, 15] was originally derived to find solutions

which have the correct propagation speed of radiation in a vacuum (i.e. c). The P1

equations are known to propagate radiation in the optically thin limit at a speed of c√
3
,

and diffusion propagates radiation with infinite speed in this limit. The P1/3 equations

are a modification of the P1 equations (Eqs. 5.6) with a weight of 1
3

applied to the time

derivative of the radiation flux

∂Eg
∂t

+ ∇ · F g + cκE,g(T )Eg = 4πκB,g(T )Bg(T ), (5.7a)

1

3c

∂F g

∂t
+
c

3
∇Eg + κ̃R,g(T )F g = 0. (5.7b)

5.2 Numerical Results

The TCA ROM is analyzed through numerical testing using the F-C problem [142]. This

test problem is described in Appendix D and Sec. 4.4. The primary goal of this analysis is

to demonstrate how accurately the proposed ROM can reproduce the solution to a TRT

problem from an array of different approximate solutions. The physics embedded in T̂ will

vary depending on which diffusion type model is used in its computation. For instance

the FLD, P1 and P1/3 models may all produce different propagation speeds (and spectral

distributions) of the radiation wavefront. These effects change how energy is redistributed

in the F-C test and alters the distribution of material temperatures in space-time. It is

important to understand how these effects are manifested in the TCA ROM’s solutions.

This numerical test problem used to analyze the TCA ROM is the F-C Test A (see

Sec. 4.4.1) using the conservative method of long characteristics to discretize the BTE (ref.

Sec. 2.3.2). The maximum width enforced by the ray tracing algorithm is wmax = 0.01cm.

T in = 1 KeV and T 0 = 1 eV are considered. All measures of accuracy are calculated

against the FOM solution to this F-C test obtained by the MLQD method (Sec. 2.1)

on the same discrete grid in space and time. Each ROM possesses the same level of

discretization error as the FOM. In the limit of fine grids these comparisons will give the
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Figure 5.1: Relative errors in the 2-norm for solutions of the FLD, P1 and P1/3 models,
and for the TCA ROM applied to those models, plotted vs time.

‘true’ error introduced by each model’s inherent approximations.

Fig. 5.1 plots relative errors (w.r.t. the FOM solution) for the material temperature

and total radiation energy density calculated in the 2-norm over space at each instant of

time in t ∈ [0, 6ns]. Separate curves are shown for each considered diffusive ROM and

for the TCA ROM applied to those diffusive ROMs. In each case the proposed ROM’s

solution finds an increase in accuracy for both quantities compared to each diffusive

ROM’s solution. The errors in T and E from the TCA ROM solution are on the order

of 10−3 for the whole interval of time, whereas the diffusive model solution errors exist

on order 10−2 for the majority of time instances. The TCA ROM is seen to increase the

accuracy of the model it is applied to by roughly an order of magnitude. The FLD model

possesses the highest accuracy of all tested diffusive ROMs, and the TCA ROM with

highest accuracy is the one applied to the FLD solution.

Next the TCA ROM is studied in its ability to capture TRT physics. The radiation

breakout time is first investigated (see Sec. 4.5), followed by the frequency spectrum

of radiation. We explore here how the TCA ROM is able to improve upon the physics

capture of each diffusive ROM, each of which is known to produce nonphysical effects

[14, 15, 16]. Fig. 5.2 displays the absolute relative error of the total radiation flux and

energy densities and the material temperature integrated along the right boundary of

the F-C test, defined in Eqs. 4.11 to be F̄R, ĒR and T̄R respectively. These quantities

are graphed vs time. The FOM solution for F̄R, ĒR and T̄R is shown in Fig. 4.13. The
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Figure 5.2: Relative error for the FLD, P1 and P1/3 models, and the TCA ROM applied
to those models, for data located at and integrated over the right boundary of the domain.

relative errors for each quantity are decreased using the TCA ROM by 1-2 orders of

magnitude for most instances of time. The most dramatic increase in accuracy is for the

FLD F̄R by about 3 orders of magnitude. In fact, the FLD F̄R is the least accurate and

the TCA ROM F̄R using the FLD solution is the most accurate of the models shown.

The explanation for this effect comes from the fact that the TCA ROM only acts on the

approximate material temperature it is given, and the FLD solution for T̄R (and T in

general from Fig. 5.1) is the most accurate of the diffusive ROMs.

The final portion of analysis examines the frequency spectrum of radiation energy

densities for each ROM. The FOM solution for these spectral quantities is given in
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Fig. 4.17 (see Sec. 4.5.2 for description). Figures will only be shown for a ‘zoomed in’

portion of the entire interval of photon energies, noting that only a single point is left out

whose errors are not significantly different than those shown. Figs. 5.3, 5.4 and 5.5 depict

the relative errors of the spectral radiation energy densities found by the FLD, P1 and

P1/3 models respectively. Each subfigure shows errors at a specific point in the F-C test

domain: (i) the domain midpoint, (ii) the midpoint of the right boundary, (iii) the bottom

corner of the right boundary. Each curve is taken at a specific instant of time chosen to

represent significant behaviors in ĒR. Each of the diffusive ROMs best approximates the

low-frequency spectrum of radiation in the optically thick regime. Higher-frequency groups

have the largest levels of error. Furthermore the entire spectrum is found to significantly

higher accuracy at the domain midpoint that at the right boundary where the solution is

more anisotropic.

Figs. 5.6, 5.7 and 5.8 depict the relative errors of the spectral radiation energy densities

found by the TCA ROM applied to the FLD, P1 and P1/3 solutions respectively. The

errors in every frequency group are decreased and there are fewer peaks in the spectrum

when the error becomes very large. The low- and mid-frequency portions of the spectrum

find an increase in accuracy of roughly an order of magnitude across all models for each

considered spatial point and time instance. The high-frequency portion of the spectrum’s

errors are much more drastically decreased by between 1 and 4 orders of magnitude, with

the largest decreases in the highest frequency groups.

An integral view (in time) of the information presented by the previous spectral plots

is provided in Figs. 5.9, 5.10 and 5.11. These plots show the spectral errors of each model

for one of the considered spatial points, where the errors have been collected in norms

over time. Specifically each figure displays the relative spectral error in the 2-norm and

infinity-norm across the interval t ∈ [0, 6ns]. This integral view is used to give a more

clear sense of how the TCA ROMs improve upon the radiation spectrum of the diffusive

ROMs, having seen the dynamics represented in the previous plots. The infinity norm

measurements are only slightly elevated from those in the 2-norm, and the TCA ROM

is demonstrated to improve upon low-frequency group errors by roughly an order of

magnitude at each considered point in space. The increase in accuracy from the diffusion

solutions significantly improves as frequency increases starting from roughly ν = 3 KeV.

This is where the peak of (non-local) radiation emanating from the boundary drive should

be located in frequency, as the Planckian spectrum B(ν, T ) peaks at ν = 2.82T .
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Figure 5.3: Relative errors of the radiation spectrum produced by the FLD model located
at (i) the domain midpoint, (ii) the midpoint of the right boundary, (iii) the corner of the
right boundary, taken at several time instances.
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Figure 5.4: Relative errors of the radiation spectrum produced by the P1 model located
at (i) the domain midpoint, (ii) the midpoint of the right boundary, (iii) the corner of the
right boundary, taken at several time instances.
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Figure 5.5: Relative errors of the radiation spectrum produced by the P1/3 model located
at (i) the domain midpoint, (ii) the midpoint of the right boundary, (iii) the corner of the
right boundary, taken at several time instances.
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Figure 5.6: Relative errors of the radiation spectrum produced by the TCA ROM using
temperatures produced by the FLD model located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figure 5.7: Relative errors of the radiation spectrum produced by the TCA ROM using
temperatures produced by the P1 model located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figure 5.8: Relative errors of the radiation spectrum produced by the TCA ROM using
temperatures produced by the P1/3 model located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figure 5.9: Relative errors of the radiation spectrum produced located at the domain
midpoint in the 2-norm and ∞-norm along the temporal interval t ∈ [0, 6ns]
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Figure 5.10: Relative errors of the radiation spectrum produced located at the midpoint
of the right boundary in the 2-norm and ∞-norm along the temporal interval t ∈ [0, 6ns]
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Figure 5.11: Relative errors of the radiation spectrum produced located at the corner of
the right boundary in the 2-norm and ∞-norm along the temporal interval t ∈ [0, 6ns]

5.3 Discussion

In this chapter a ROM is introduced for TRT problems that approximates the Eddington

tensor over all phase space and time simultaneously from a known diffusion-based solution

of a problem on the same phase space and time. Three diffusion models were considered

to be used with the TCA ROM on this problem: a FLD model, and the P1, P1/3 models.

Each of the diffusion ROMs was shown to recreate the FOM solution with errors on the

order of 10−2 and 10−1, with the FLD model being the most accurate. The TCA ROM

provided an increase in accuracy of 1-2 orders of magnitude in the total radiation energy

density and material temperature when applied to each diffusion-based solution. The

entire spectrum of radiation present at different points in the test domain was improved

upon as well compared to the diffusion solutions. The most significant reduction in error

from the diffusion solutions in the frequency spectrum was in the high-frequency range

with strong transport effects.

In sum, the TCA ROM has been demonstrated to produce accurate solutions to the

TRT problem given a known approximate temperature distribution in space-time obtained

with a variety of diffusion models, all of which produce different physical effects. Possible

future extensions of this ROM include parameterization of the model with interpolation

between diffusion solutions for a series of TRT problems, or the use of other approximate
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models for TRT such as VEF models in place of diffusion.

An especially compelling item for the continued development of this model is an

extension to a global iteration process for solving TRT problems. When the TCA ROM is

applied to a diffusion solution in a phase-space and time simultaneously, a solution with

improved accuracy in this phase space and time is produced. The TCA ROM could then

be applied once again to this improved solution, repeatedly until the radiation field and

material temperature converge to some level in the phase-space and time. This process

can be cast into the form of an iteration process whose iterations are each performed over

all time instances, using a ‘global’ diffusion solve as the initial guess or zeroth iteration.

Preliminary results for this methodology have demonstrated that each cycle improves

the solution accuracy and that this process will converge after a sufficient number of

iterations.
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CHAPTER

6

A ROM USING A POD-BASED

PROJECTION OF THE BTE WITH

LOW-ORDER EQUATIONS

In this chapter a ROM is formulated based on a matrix-free (transport sweep compatible)

POD-Galerkin projection of the BTE that can determine the Eddington tensor which

yields closure for the nonlinear system of LOQD moment equations and the MEB equation.

The proper orthogonal modes that describe a known set of photon intensity distributions

in phase space and time are used as a global basis onto which the BTE can be projected

(see Sec. 3.3). Numerical results are presented to demonstrate the ROM performance and

accuracy using low-rank approximations of the radiation intensities. The results presented

in this chapter have been published in [86] and presented at the 2021 International

Conference on Mathematics and Computational Methods Applied to Nuclear Science and

Engineering.
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6.1 Fundamental Approach

The DET class of ROMs for TRT (see Ch. 4) models radiative transfer with the multilevel

set of LOQD moment equations that are closed with an approximate Eddington tensor

obtained directly through methods like the POD and DMD. At a high level this closure

allows for accounting of high-order information and transport effects in some projected

space. In this chapter, the BTE which provides the high-order information required to

compute the Eddington tensor is projected with a POD-Galerkin approach (ref. Sec. 3.3).

The BTE is projected onto some low-dimensional space where an approximation of the

intensity shape function can be calculated at low computational cost, which is expressed

as an expansion in some global basis that can describe the Eddington tensor.

The multigroup BTE (Eq. 1.6) is written in operator form as

1

c
∂tI + LI +K(T )I = Q(T ), (6.1)

where I = (I1, . . . , INg)
> and

L ≡ Ω ·∇, K ≡ diag(κE,1, . . . ,κE,Ng), Q ≡ (κB,1B1, . . . ,κB,NgBNg)
>. (6.2)

The radiation intensities are expanded in some set of basis functions {u`}k`=1 that span

all phase space

Ik(r,Ω, t) =
k∑
`=1

λ`(t)u`(r,Ω), (6.3)

with u` = (u`,1 . . . , u`,Ng)
>. This expansion is substituted in Eq. 6.1 to yield

k∑
`=1

[
1

c
u`∂tλ` + λ`Lu` + λ`K(T )u`

]
= Q(T ), (6.4)

followed by a projection onto the basis {u`}k`=1 by applying the inner product 〈u`′ , ·〉 for

all `′ = 1, . . . , k which gives the following ODE for λ`(t):

k∑
`=1

[
1

c
〈u`′ ,u`〉∂tλ` + λ`〈u`′ ,Lu`〉+ λ`〈u`′ ,K(T )u`〉

]
= 〈u`′ ,Q(T )〉, (6.5a)

λ|t=0 = 〈u`, I|t=0〉, ` = 1, . . . , k, (6.5b)

`′ = 1, . . . , k.

105



This inner product is defined as

〈u`′ ,u`〉 =

Ng∑
g=1

∫
4π

dΩ

∫
Γ

d3r u`,gu`′,g. (6.6)

Eq. 6.5a is a dense k × k system of equations with solution {λ`}k`=1. The high-order

solution to the BTE is found by solving Eq. 6.5a and using the coefficients λ` for the

expansion in Eq. 6.3.

6.2 Projection of the Boltzmann Equation in Dis-

crete Space

Let the BTE be discretized in time with the backward Euler time integration scheme, in

angle with the method of discrete ordinates and in space with the simple corner balance

discretization, restricted to 1D slab geometry (see Sec. 2.2). In this case the elements of

In ∈ RNI are Ing,m,i,l with g = 1, . . . , Ng, m = 1, . . . , NΩ, i = 1, . . . , Nx being indices of

the frequency group, direction of motion, and x−position on the spatial grid, respectively.

l = L,R denotes the left or right side of a spatial cell and thus NI = 2NgNΩNx. In

discrete form, Eq. 6.1 becomes

1

c∆tn
(In − In−1) + LhIn +Knh(T )In = Qnh(T ). (6.7)

The source vector Qnh ∈ RNI absorbs the boundary conditions, with elements defined as

(
Qnh(T )

)
g,m,i,l

= 2πκn
B,g,i(T )Bn

g,i(T ) +Qin
g,m,i,l (6.8)

where

Qin
g,m,i,l =

{
δi,1δl,LI

in+
g,m m ∈ {m : µm > 0}

δi,Nxδl,RI
in−
g,m m ∈ {m : µm < 0}

(6.9)

and I in± is the incoming radiation on the left/right boundaries of the problem, with δi,j
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denoting the Kronecker delta. The operator Lh : RNI → RNI is defined as follows:

(LhIn)g,m,i,L =

{
µm
∆xi

(Ig,m,i,R + Ig,m,i,L − 2αi,1Ig,m,i−1,R) m ∈ {m : µm > 0}
µm
∆xi

(Ig,m,i,R − Ig,m,i,L) m ∈ {m : µm < 0}
(6.10a)

(LhIn)g,m,i,R =

{
µm
∆xi

(Ig,m,i,R − Ig,m,i,L) m ∈ {m : µm > 0}
µm
∆xi

(2αi,NxIg,m,i+1,L − Ig,m,i,R − Ig,m,i,L) m ∈ {m : µm < 0}
(6.10b)

Here αi,j = 1− δi,j. Finally, the operator Knh(T ) : RNI → RNI is given by

(Knh(T )In)g,m,i,l = κn
E,g,i(T )Ing,m,i,l. (6.11)

6.2.1 Formulation of the POD Basis

The numerical solution to the BTE over Nt time steps can be collected into a snapshot

matrix with chronologically ordered columns

AI = [I1 I2 . . . INt ] ∈ RNI×Nt . (6.12)

The matrix AI informs a POD basis {u`}k`=1 which is formulated to give an optimal

approximation of the snapshots In in the W norm, defined by our specific discretization

schemes in phase space (ref. Sec. 3.3.1). Here the discrete weighted inner product 〈·, ·〉W
must correspond to the continuous inner product defined earlier (Eq. 6.6) which represents

an integration over phase space. Let the right face of the ith cell in the discrete spatial

grid be xi+ 1
2
, where xi+ 1

2
= xi− 1

2
+ ∆xi. Then for two functions u(x),v(x) ∈ RNgNΩ with

elements ug,m(x) and vg,m(x), the inner product in discrete space is

〈u,v〉W =

Ng∑
g=1

NΩ∑
m=1

wm

Nx∑
i=1

∫ x
i+ 1

2

x
i− 1

2

ug,m(x)vg,m(x) dx. (6.13)

where {wm} is the set of angular quadrature weights. The SCB scheme defines the

integration over each ith spatial cell by∫ x
i+ 1

2

x
i− 1

2

ug,m(x) dx =
∆xi

2
(ug,m,i,R + ug,m,i,L), (6.14)

where ug,m,i,R and ug,m,i,L are the values of ug,m(x) at the right and left sides of the ith cell

respectively. With this, the weighted inner product is defined for any vectors u`,u`′ ∈ RNI
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as

〈u`′ ,u`〉W =

Ng∑
g=1

NΩ∑
m=1

Nx∑
i=1

wm∆xi
2

(u`′,g,m,i,Lu`,g,m,i,L + u`′,g,m,i,Ru`,g,m,i,R), (6.15)

which can also be written in the form 〈u`′ ,u`〉W = u>`′Wu` where the matrix of weights

is defined by

W =

Ng⊕
g=1

NΩ⊕
m=1

Nx⊕
i=1

wm∆xi
2

I2, I2 = diag(1, 1). (6.16)

In order for the POD basis {u`}k`=1 to satisfy the minimization condition in Eq. 3.30,

calculations must be done using the weighted snapshot matrix [131]

ÂI = W1/2AIH1/2, (6.17)

where H = diag(∆t1, . . . , ∆tNt) is an analogue to W corresponding to the temporal

weights introduced by the chosen scheme for time integration. The POD basis functions for

our expansion are calculated as the first k columns of the matrix U = [u1 . . . ur] ∈ RNI×r,

defined by

U = W−1/2Û, (6.18)

where r = rank(ÂI) and Û is the matrix whose columns hold the left singular vectors of

ÂI (see Sec. 3.3.1).

6.2.2 Projection onto the POD Basis

The discrete vectors of radiation intensities are expanded about the POD basis functions

Ink =
k∑
`=1

λn`u`, k ≤ r. (6.19)

Substituting this expansion into Eq. 6.7 yields

k∑
`=1

[
u`
c∆tn

(λn` − λn−1
` ) + λn`Lhu` + λni Knh(T )u`

]
= Qnh(T ). (6.20)

Eq. 6.20 is then projected onto the POD basis by applying the inner product 〈u`′ , ·〉W for
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all `′ = 1, . . . , k to find the following system of (time dependent) equations:

1

c∆tn
(λn`′ − λn−1

`′ ) +
k∑
`=1

λn` 〈u`′ ,Lhu`〉W

+
k∑
`=1

λn` 〈u`′ ,Knh(T )u`〉W = 〈u`′ ,Qnh(T )〉W , (6.21a)

λ0
` = 〈u`, I0〉W , ` = 1, . . . , k, (6.21b)

`′ = 1, . . . , k

where the orthonormality of the POD basis functions in the W norm has been leveraged.

6.3 Formulation of the Reduced Order Model

The class of ROMs derived in this chapter model TRT physics with the POD-Galerkin

(POD-G) projected BTE combined with the multilevel system of LOQD equations coupled

with the MEB equation. This model is henceforth referred to as the POD-G BTE-QD

ROM and is formulated by

• The POD-Galerkin projected BTE (Eq. 6.21a) which solves for radiation intensities

that lie in the space spanned by the chosen basis {u`}k`=1

• The multigroup LOQD equations (Eqs. 2.3), closed by the Eddington tensor that is

defined via the rank k POD-Galerkin expansion of intensities

• The effective grey problem formed by the effective grey LOQD equations and the

MEB equation (Eqs. 2.13)

Calculation of the POD basis functions used in these ROMs can be done before solving

any TRT problems and comprises the method’s offline stage. The online stage of the

ROMs when used to solve TRT problems is outlined in Alg. 5. Of the inner products used

to define the POD-G BTE (Eq. 6.21a), those that only depend on the basis functions

(e.g. 〈u`′ ,Lhu`〉W ) can be pre-computed before solving a problem. The inner products

that contain nonlinear terms with respect to the material temperature must, conversely,

be continuously updated during the iteration process.
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Algorithm 5: Obtaining the solution to TRT problems with the POD-G BTE-
QD ROM

Input: k, {u`}ki=1

Calculate 〈u`′ ,Lhu`〉W for `, `′ = 1, . . . , k
n = 0
while tn ≤ tend do

n = n+ 1

T (0) = T n−1

f(0)
g = fn−1

g

s = −1

while ‖T (s) − T (s−1)‖ > ε1‖T (s)‖+ ε2,
‖E(s) − E(s−1)‖ > ε1‖E(s)‖+ ε2 do

s = s+ 1

if s ≥ 1 then
Update 〈u`′ ,Knh(T )u`〉W , 〈u`′ ,Qnh(T )〉W with T (s−1) for `, `′ = 1, . . . , k

Solve the POD-G BTE (Eq. 6.21a) for {λ`}k`=1

Compute Ink =
∑k

`=1 λ
n
`u`

Compute f(s)
g from Ink (Eq. 2.4)

end
q = 0

while ‖T (s, q) − T (s, q−1)‖ > ε1‖T (s, q)‖+ ε2,
‖E(s, q) − E(s, q−1)‖ > ε1‖E(s, q)‖+ ε2 do

q = q + 1

Update κE,g,κB,g, κ̃R,g, Bg with T (s−1, q)

Solve multigroup LOQD equations (Eqs. 2.3) with f(s)
g for E

(s, q)
g , F (s, q)

g

Compute spectrum-averaged closures for the effective grey problem
with E

(s, q)
g , F (s, q)

g

Solve effective grey problem (Eqs. 2.13 and 2.20) for
T (s, q), E(s, q), F (s, q)

end

T (s) ← T (s, q)

end

T n ← T (s)

fng ← f(s)
g

end
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6.4 Numerical Results

Numerical results for this ROM are presented here as a demonstration of performance in

the absence of theory that can be used to predict the ROM’s behavior (see Sec. 4.4 for

further motivation). This is an important step in the development of a ROM such as this

one before further considerations can be righteously attended to, such as parameterization

of the model or the use of hyper-reduction techniques to further reduce the ROM’s

complexity. The ROM must be first proven robust to the nonlinear class of TRT problems.

6.4.1 F-C Test B

To test and analyze the POD-G BTE-QD ROM, the F-C test problem in 1D slab geometry

is used (see Sec. 4.4.1 & Appendix D). This section describes the specific form of the F-C

test used in this analysis, referred to as the F-C Test B. The slab is 6 cm thick, and

initially at a temperature of T 0. The left boundary of the domain is subject to incoming

radiation with blackbody spectrum at a temperature of T in, and the right boundary is

subject to a vacuum condition (no incoming radiation). Values of T 0 = 1 eV and T in = 1

KeV are used here. The parameters of convergence criteria for iterations are ε1 = 10−14,

ε2 = 10−15 (ref. Alg. 5). The BTE is discretized with the simple corner balance scheme

in space (see Sec. 2.2) and low-order QD equations are discretized with a finite volumes

scheme (ref. Sec. 2.4).

The time interval for the problem is t ∈ [0, 6ns] which is discretized into Nt = 300

uniform time steps ∆t = 2× 10−2 ns. The spatial mesh consists of a uniform Nx = 60 cells

with width ∆x = 0.1 cm. The angular mesh has 8 discrete directions (NΩ = 8) using the

double S4 Gauss-Legendre quadrature set. Ng = 17 energy groups are defined as shown in

Table D.1. The number of DoF describing In at each instant of time tn is NI = 1.632×104.

The number of DoF in phase space and time is equal to NINt = 4.896× 106.

6.4.2 Analysis of POD Databases & Singular Values

Using a single POD basis to describe the entire temporal interval t ∈ [0, 6ns] has been

found to be problematic for this methodology. The F-C test evolves with several distinct

physical regimes, which can be difficult to capture with a single basis. A high rank of

expansion can be required to capture the structure of all regimes, and the iterative process

can become sensitive to the basis quality. If the chosen set of basis functions does not
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sufficiently represent any one regime, the ROM can produce nonphysical effects in the

corresponding temporal interval in the F-C test.

For these reasons several POD bases were formed to describe select subintervals of

the overall time window as done with the principal interval decomposition [152]. These

subintervals were chosen to describe the different physical regimes encountered in the F-C

test, which evolves in three distinct stages: (i) rapid wave formation, (ii) wave propagation,

and (iii) slow continual heating of the domain to steady state. A separate database is

constructed by the FOM for each of these stages, whose temporal ranges are the following:

t ∈ [0, 0.3 ns], t ∈ (0.3, 1.2 ns], and t ∈ (1.2, 6 ns]. These intervals were chosen based on

qualitative evaluation of the TRT physics in the solution snapshots (see Fig. D.3).

The resulting database matrices that hold the set of discrete intensities for each of

the three stages of the F-C test are denoted by AI
i ∈ RNI×Nt,i , i = 1, 2, 3. The columns of

each database are snapshots of the solution at Nt,1, Nt,2, Nt,3 instants of time, respectively,

ordered chronologically. The full ranks ri of AI
i are equal to r1 = Nt,1 = 15, r2 = Nt,2 =

45, r3 = Nt,3 = 240 respectively. The singular values (σ`) of each of the three databases

are depicted in Fig. 6.1. The first database shows a slow rate of decrease in magnitude

of its singular values over the entire range, whereas the singular values of the other two

databases first experience rapid decrease followed by a plateau where the change in their

magnitudes slows significantly. From the matrices AI
i , POD bases {ui,`}ki`=1, i = 1, 2, 3

are calculated for each of these time intervals.

1 3 5 7 9 1 1 1 3 1 5
1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

σ l

S i n g u l a r  V a l u e  I n d e x  ( l )

(a) A1 (0 ≤ t ≤ 0.3 ns)

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5
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1 0 - 2

1 0 - 1

1 0 0
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σ l

S i n g u l a r  V a l u e  I n d e x  ( l )

(b) A2 (0.3 < t ≤ 1.2 ns)

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0
1 0 - 1 3

1 0 - 1 1

1 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

1 0 1

1 0 3

σ l

S i n g u l a r  V a l u e  I n d e x  ( l )

(c) A3 (1.2 < t ≤ 6 ns)

Figure 6.1: Singular values of the database matrices of intensities over three time subin-
tervals of the problem

The F-C test is solved with the POD-G BTE-QD model by expanding I with each of
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the three POD bases based on the time frames they were generated for (e.g. I is expanded

with {u1,`}k1
`=1 while 0 ≤ t ≤ 0.3 ns). The ranks (k1, k2, k3) of the expansion in Eq. 6.19 are

determined as the values that satisfy Eq. 3.12 given some desired ξ. The ranks found for

ξ ∈ [10−5, 10−16] are shown in Fig. 6.2. Values of ξ > 10−5 are not shown in this analysis,

as the ROM using these ξ produces unsuitable solutions. The POD bases for AI
1 and AI

2

reach full rank (k1 = 15, k2 = 45) at ξ = 10−6 and ξ = 10−8, respectively. Full-rank is

not found for the basis of AI
3 (k3 = 240) until ξ = 10−16. This behavior is expected since

compared to AI
3, the full ranks of AI

1 and AI
2 are relatively small. The singular values of

both AI
1 and AI

2 also occupy a smaller range than for A3. Another notable behavior is

that k3 < k2 for ξ < 10−8, indicating that the solution contained in the time range over

which AI
2 was generated is the most difficult to represent with few POD modes. This is

reasonable given that AI
2 accounts for the solution during propagation of the radiation

wavefront from the left boundary to the right, which is known to be a difficult phenomena

for the POD to represent with low rank [148, 149].

1 0 - 5 1 0 - 6 1 0 - 7 1 0 - 8 1 0 - 9 1 0 - 1 0 1 0 - 1 1 1 0 - 1 2 1 0 - 1 3 1 0 - 1 4 1 0 - 1 5 1 0 - 1 6
0
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1 8 0
2 1 0
2 4 0
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 Ex
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 (k

)

ξ

 k 1
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 k 3

Figure 6.2: Rank of expansion for each database corresponding to different ξ

6.4.3 Analysis of ROM Errors

Numerical results for the errors of the POD-G BTE-QD model relative to the FOM

solution on the F-C test in the 2-norm are displayed in Fig. 6.3 for the material temperature

and radiation energy density vs. time. Each unique curve shows the relative error of the
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Figure 6.3: Relative errors of the POD-G BTE-QD ROM compared to the FOM solution
in the 2-norm vs. time

ROM solution for a specific value of ξ. Fig. 6.3 shows that as ξ decreases, the relative

error of the ROM converges towards zero uniformly in time until the errors are close

to 10−15 and some numerical noise becomes prevalent. Upon inspection, the ROM with

ξ = 10−6, 10−7 is exceptionally accurate for t ≤ 0.3 ns. This comes from the full-rank

basis representation of AI
1 that occurs for all ξ < 10−5, as was shown in Fig. 6.2. Similarly,

the high accuracy for t ≤ 1.2 ns while using ξ < 10−7 follows from the fact that the

full-rank basis representation of AI
2 is used for ξ < 10−7. Considering overall accuracy,

even with low-rank (ξ = 10−5) the POD-G BTE-QD model maintains a relative error in

both material temperature and radiation energy density below 10−5. When using all POD

modes (ξ = 10−16) the POD-G BTE-QD model converges to the FOM solution within

bounds of 10−11 with the exception of the radiation energy density while t < 0.5 ns. This

comes from higher errors found at the radiation wavefront during formation, which is a

difficult process to capture given how rapidly it progresses and can be prone to larger

numerical errors than other parts of the solution.

Similarly to Fig. 6.3, Fig. 6.4 also displays the relative error in the solution of the F-C

test obtained by the POD-G BTE ROM compared to the FOM solution in the 2-norm,

but plotted vs. ξ. In Fig. 6.4 each curve corresponds to a specific instant of time, showing

how the error of the ROM changes with respect to ξ when time is held static. This plot

clearly demonstrates the convergence behavior of the ROM solution as ξ decreases to zero

for most time steps. The errors in both quantities can be expressed as roughly ξ · 10−1.
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Figure 6.4: Relative errors of the POD-G BTE-QD model compared to the FOM solution
in the 2-norm vs. ξ

6.5 Discussion

In this chapter a new ROM for TRT problems is derived based on the nonlinear projection

approach and Galerkin projection combined with the POD. The model is able to efficiently

reduce the dimensionality of TRT problems and was demonstrated to produce solutions

with high accuracy using low-rank expansions of the radiation intensities. The ROM errors

w.r.t the FOM solution on the same grid in phase space and time are shown to converge

linearly with the rank parameter ξ as well. The results demonstrate this ROM is able to

effectively solve the nonlinear TRT problem using a low dimensional representation of

the high-order solution, and therefore justify extensions of the model to 2D geometry or

to parametric applications. Furthermore, the use of hyper-reduction techniques like the

discrete empirical interpolation method (DEIM) or the DMD [153, 137] could be used to

reduce the complexity of the ROM.

Preliminary investigations of this model in 2D Cartesian geometry have been explored.

Here the numerical issues observed in 1D geometry are increased, and further development

is required before this extension can be viable. One desirable feature is to enforce positivity

of the expanded intensities. Work may also be done to improve the generation of POD

bases, such as with the use of symmetry-reduction methods [148, 149] which are known

to improve basis generation for traveling waves.
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CHAPTER

7

A ROM USING A POD-BASED

PROJECTION OF THE NBTE AND

LOW-ORDER EQUATIONS

In this chapter a POD-Petrov-Galerkin projection of the normalized BTE is derived that

can be coupled to the system of LOQD and MEB equations to solve TRT problems.

The NBTE is first discretized with a novel scheme developed in this chapter. A Petrov-

Galerkin projection is constructed for this discretized NBTE using full-order solutions

of the radiation intensities that are retroactively normalized during the method’s offline

phase. This projection scheme is formulated in a matrix free way that is compatible

with transport sweeps. The Eddington tensor that closes the system of low-order QD

(VEF) equations is found as a linear superposition of the photon intensity shape function

provided by the POD projected NBTE. In practice, the POD-Petrov-Galerkin projected

NBTE is significantly lower in dimensionality than the moment equations it becomes

coupled to. Furthermore this ROM is naturally parametric, since the projected NBTE

includes nonlinear terms that depend on the material temperatures T .
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7.1 The Normalized Boltzmann Transport Equation

In Ch. 4, a class of ROMs was developed to solve TRT problems with the multilevel set of

LOQD and MEB equations by finding some data-based approximation of the Eddington

tensor [82, 83]. In Ch. 6 a model was developed to approximate the Eddington tensor

using a POD based projection of the BTE whose solution provides information on the

high-order photon intensities in phase space [86]. In this Chapter, a ROM is derived by

finding a POD based projection of the NBTE which can be coupled to the multilevel set

of LOQD and MEB equations via the Eddington tensor. The viability and robustness

of this proposed ROM is explored in detail here in the absence of consideration for

parameterization and hyper-reduction. Such considerations are generally valuable only

when they can be applied to a model whose fundamental behavior is well understood.

The NBTE is attractive because of its close relation to the Eddington tensor. The

shape function of radiation intensities required to find the Eddington tensor is provided

by the NBTE solution as the normalized radiation intensity distribution. The normalized

intensities Ī lie in the same space as and are related to the Eddington tensor with a

linear relationship. Therefore any global basis that describes Ī also directly describes the

Eddington tensor by way of some linear superposition. In other words, the Eddington

tensor will lie in the span of basis functions that describes the normalized intensities.

The normalized photon intensity function also has properties that make it more

suitable than I for compression and description via few fundamental modes. For instance,

Ī is naturally bounded by
∫

4π
Ī dΩ = 1, whereas I itself can span hundreds of orders

of magnitude across phase space. In finite arithmetic this can limit the precision to

which even a full rank POD basis can represent the radiation intensities. For the same

calculations Ī will experience drastically less precision loss, and should even beget lower-

rank representations with the same accuracy compared to I.

The NBTE (Eq. 1.16) can be used in place of the BTE in the MLQD system. In this

case the Eddington tensor can be calculated with Eq. 1.14. Gol’din’s boundary factors (Eq.

2.7) still take on a linear-fractional form when written in terms of Ī however. To make

better use of Ī the low-order boundary conditions derived by Miften & Larsen [115, 116]

(Eqs. 2.10 & 2.18) can be used instead, which are closed via the so-called ‘boundary

Eddington tensor’ (Eq. 2.11) that exists in the same space as fg and Ī

Gg = 〈|nΓ ·Ω|, Īg〉Ω. (7.1)
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Thus, the MLQD system for TRT problems can be reformulated using the NBTE as

1. The high-order NBTE

2. The multigroup LOQD system (Eqs. 2.3) with BCs in Eq. 2.10

3. The effective grey LOQD system (Eqs. 2.13) with BCs in Eq. 2.18

4. The MEB equation (Eq. 2.20)

7.1.1 Discretization of the Normalized Boltzmann Transport

Equation

Here discretizations of the NBTE are derived in a consistent manner to those schemes

shown in Sec. 2.3 for the BTE. In 2D Cartesian geometry, the NBTE (Eq. 1.15) is written

as
1

c

∂(φg Īg)

∂t
+ Ωx

∂(φg Īg)

∂x
+ Ωy

∂(φg Īg)

∂y
+ κE,g(T )φg Īg = κB,g(T )Bg(T ), (7.2)

with Īg = Īg(x, y,Ω, t) and φg = φg(x, y, t). The NBTE is discretized in time using the

implicit backward-Euler integration scheme and in angle using the method of discrete-

ordinates, yielding

1

c

φng Ī
n
g,m − φn−1

g Īn−1
g,m

∆tn
+ Ωx,m

∂(φng Ī
n
g,m)

∂x
+ Ωy,m

∂(φng Ī
n
g,m)

∂y
+ κn

E,gφ
n
g Ī

n
g,m = κn

B,gB
n
g , (7.3)

g = 1, . . . , Ng, m = 1, . . . , NΩ, n = 1, . . .

A reformulation of Eq. 7.3 that takes on a pseudo steady-state form can now be written as

Ωx,m

∂φng Ī
n
g,m

∂x
+ Ωy,m

∂φng Ī
n
g,m

∂y
+ κ̃n

E,gφ
n
g Ī

n
g,m = Q̄n

g,m, (7.4)

with a modified opacity κ̃n
E,g = κn

E,g + 1
c∆tn

and source Q̄n
g,m = κn

B,gB
n
g +

φn−1
g Īn−1

g,m

c∆tn
.

To derive a SCB (ref. Sec. 2.3.1) analogue for the NBTE, all cell- and subcell- averages

must be conserved. In the following derivation g, m and n subscripts and superscripts

are ignored for brevity. The SCB grid functions of normalized intensities are defined by

the corresponding SCB grid functions of radiation intensities and their zeroth angular

118



moments to obtain the following unknowns in each cell:

Īi,j =
Ii,j
φi,j

, Īi+ 1
2
,j =

Ii+ 1
2
,j

φi+ 1
2
,j

, Īi,j+ 1
2

=
Ii,j+ 1

2

φi,j+ 1
2

. (7.5)

If the subcell averages (Eqs. 2.33) are to be preserved, then we have the following:

Īij,1− =
Iij,1−
φi− 1

2
,j

, Īij,4+ =
Iij,4+

φi− 1
2
,j

, (7.6a)

Īij,1+ =
Iij,1+

φi,j− 1
2

, Īij,2− =
Iij,2−
φi,j− 1

2

, (7.6b)

Īij,2+ =
Iij,2+

φi+ 1
2
,j

, Īij,3− =
Iij,3−
φi+ 1

2
,j

, (7.6c)

Īij,3+ =
Iij,3+

φi,j+ 1
2

, Īij,4− =
Iij,4−
φi,j+ 1

2

, (7.6d)

Īij,1 =
Iij,1
φij

, Īij,2 =
Iij,2
φij

, Īij,3 =
Iij,3
φij

, Īij,4 =
Iij,4
φij

. (7.6e)

The normalized intensities on each ‘inner’ subcell interface are given by

Īij, 1
2

=
Iij, 1

2

φij
, Īij, 3

2
=
Iij, 3

2

φij
, Īij, 5

2
=
Iij, 5

2

φij
, Īij, 7

2
=
Iij, 7

2

φij
. (7.7)

Eqs. 2.30, which represent spatial integration of the BTE over each subcell, can now be

written for the NBTE as

1

2
Ωx∆yj

(
Īij, 3

2
φi,j − Īij,1−φi− 1

2
,j

)
+

1

2
Ωy∆xi

(
Īij, 1

2
φi,j − Īij,1+φi,j− 1

2

)
+

1

4
κ̃E,ijAij Īij,1φi,j =

1

4
AijQ̄ij,1, (7.8a)

1

2
Ωx∆yj

(
Īij,2+φi+ 1

2
,j − Īij, 3

2
φi,j
)

+
1

2
Ωy∆xi

(
Īij, 5

2
φi,j − Īij,2−φi,j− 1

2

)
+

1

4
κ̃E,ijAij Īij,2φi,j =

1

4
AijQ̄ij,2, (7.8b)

1

2
Ωx∆yj

(
Īij,3−φi+ 1

2
,j − Īij, 7

2
φi,j
)

+
1

2
Ωy∆xi

(
Īij,3+φi,j+ 1

2
− Īij, 5

2
φi,j
)

+
1

4
κ̃E,ijAij Īij,3φi,j =

1

4
AijQ̄ij,3, (7.8c)
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1

2
Ωx∆yj

(
Īij, 7

2
φi,j − Īij,4+φi− 1

2
,j

)
+

1

2
Ωy∆xi

(
Īij,4−φi,j+ 1

2
− Īij, 1

2
φi,j
)

+
1

4
κ̃E,ijAij Īij,4φi,j =

1

4
AijQ̄ij,4. (7.8d)

Eqs. 7.8 are by nature scaled to the magnitude of I. To formulate a discretization whose

equations (and their residuals) are scaled to the same magnitude as Ī, φ−1
i,j is applied to

find the following subcell-integral relations

1

2
Ωx∆yj

(
Īij, 3

2
−
φi− 1

2
,j

φi,j
Īij,1−

)
+

1

2
Ωy∆xi

(
Īij, 1

2
−
φi,j− 1

2

φi,j
Īij,1+

)
+

1

4
κ̃E,ijAij Īij,1 =

1

4
Aij

ˆ̄Qij,1, (7.9a)

1

2
Ωx∆yj

(
φi+ 1

2
,j

φi,j
Īij,2+ − Īij, 3

2

)
+

1

2
Ωy∆xi

(
Īij, 5

2
−
φi,j− 1

2

φi,j
Īij,2−

)
+

1

4
κ̃E,ijAij Īij,2 =

1

4
Aij

ˆ̄Qij,2, (7.9b)

1

2
Ωx∆yj

(
φi+ 1

2
,j

φi,j
Īij,3− − Īij, 7

2

)
+

1

2
Ωy∆xi

(
φi,j+ 1

2

φi,j
Īij,3+ − Īij, 5

2

)
+

1

4
κ̃E,ijAij Īij,3 =

1

4
Aij

ˆ̄Qij,3, (7.9c)

1

2
Ωx∆yj

(
Īij, 7

2
−
φi− 1

2
,j

φi,j
Īij,4+

)
+

1

2
Ωy∆xi

(
φi,j+ 1

2

φi,j
Īij,4− − Īij, 1

2

)
+

1

4
κ̃E,ijAij Īij,4 =

1

4
Aij

ˆ̄Qij,4, (7.9d)

where ˆ̄Qn
ij,k = κB,ijB̄ij +

φn−1
ij

φnij

Īn−1
ij,k

c∆tn
and B̄ is defined in Eq. 1.17. Finally, the upwinding

conditions for I (Eqs. 2.32) take on the following form for Ī

Īij,2+ =
φi,j
φi+ 1

2
,j

Īij,2, Īij,3+ =
φi,j
φi,j+ 1

2

Īij,3,

Īij,3− =
φi,j
φi+ 1

2
,j

Īij,3, Īij,4− =
φi,j
φi,j+ 1

2

Īij,4, Ωx > 0,Ωy > 0 (7.10a)
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Īij,3+ =
φi,j
φi,j+ 1

2

Īij,3, Īij,4+ =
φi,j
φi− 1

2
,j

Īij,4,

Īij,4− =
φi,j
φi,j+ 1

2

Īij,4, Īij,1− =
φi,j
φi− 1

2
,j

Īij,1, Ωx < 0,Ωy > 0 (7.10b)

Īij,4+ =
φi,j
φi− 1

2
,j

Īij,4, Īij,1+ =
φi,j
φi,j− 1

2

Īij,1,

Īij,1− =
φi,j
φi− 1

2
,j

Īij,1, Īij,2− =
φi,j
φi,j− 1

2

Īij,2, Ωx < 0,Ωy < 0 (7.10c)

Īij,1+ =
φi,j
φi,j− 1

2

Īij,1, Īij,2+ =
φi,j
φi+ 1

2
,j

Īij,2,

Īij,2− =
φi,j
φi,j− 1

2

Īij,2, Īij,3− =
φi,j
φi+ 1

2
,j

Īij,3, Ωx > 0,Ωy < 0 (7.10d)

7.2 Projection of the Normalized Boltzmann Trans-

port Equation

A POD-Petrov-Galerkin projection is derived here for the NBTE. A Petrov-Galerkin

scheme is selected to minimize the effects of numerical noise, which were observed with

the POD-Galerkin projection of the BTE in Ch. 6. The Petrov-Galerkin technique will

also enforce an optimality condition on the resulting form of the NBTE (see Sec. 3.3.2).

This will ensure the derived ROM’s accuracy will be maximal in a certain norm. The

continuous case is addressed first before the discrete case. Let the NBTE (Eq. 1.16) be

written in operator notation as follows

1

c
∂tĪ + LĪ + K̂(T,φ)Ī = Q̄(T,φ), (7.11)

where Ī = (Ī1, . . . , ĪNg)
>, φ = (φ1, . . . , φNg)

>,

L ≡ Ω ·∇, K̂ ≡ diag(κ̂E,1, . . . , κ̂E,Ng), Q̄ ≡ (κB,1B̄1, . . . ,κB,NgB̄Ng)
> (7.12)

where κ̂E,g is defined by Eq. 1.18.

The normalized radiation intensities are expanded in a set of basis functions {u`}k`=1
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that span all phase space

Īk(r,Ω, t) =
k∑
`=1

λ`(t)u`(r,Ω), (7.13)

with u` = (u`,1 . . . , u`,Ng)
>. This expansion is then substituted in Eq. 7.11 to find

k∑
`=1

[
1

c
u`∂tλ` + λ`Lu` + λ`K̂(T,φ)u`

]
= Q̄(T,φ). (7.14)

A Petrov-Galerkin projection of this equation onto some test basis {ψ`}k`=1 with ψ` =

(ψ`,1 . . . , ψ`,Ng)
> is sought. From Thm. 3.3.1 these basis functions are defined as ψ` =

dR(λ`u`)
dλ`

, noting that the optimality of this basis is strictly in the discrete case and does

not necessarily hold true in continuous space [140]. The residual operator R for the NBTE

is defined from Eq. 7.11 as

RĪ = J Ī − Q̄, (7.15)

where

J = ∂t + L+ K̂. (7.16)

Eq. 7.14 is projected onto this test basis with the inner product 〈ψ`′ , ·〉 for all `′ = 1, . . . , k

to find the following ODE for λ`(t):

k∑
`=1

[
1

c
〈ψ`′ ,u`〉∂tλ` + λ`〈ψ`′ ,Lu`〉+ λ`〈ψ`′ , K̂(T,φ)u`〉

]
= 〈ψ`′ , Q̄(T,φ)〉, (7.17a)

k∑
`=1

〈ψ`′ ,u`〉λ`|t=0 = 〈ψ`′ , I|t=0〉 (7.17b)

`′ = 1, . . . , k.

This inner product is defined in Eq. 6.6.

7.3 Projection in Discrete Space

The fully discrete NBTE can be written in operator notation in the same form as in Eq.

7.11. However, using the scheme outlined in Sec. 7.1.1, it is more straightforward to write
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the discrete NBTE in the form

Th(φn,φn−1)Ī
n

+ Lh(φn)Ī
n

+Knh(T )Ī
n

= Q̄nh(T,φn) + B̄h(φn), (7.18)

where Ī
n ∈ RNI holds the grid functions of the normalized radiation intensity across all

phase space at the nth instance of time, φn ∈ RNφ holds the grid functions of the zeroth

intensity moment over space and frequency at the nth instance of time, Th represents the

discrete form of the time derivative in Eq. 7.2, and B̄h subsumes the boundary conditions

on Ī. The elements of Ī
n

are Īng,m,i,j,l with g = 1, . . . , Ng, m = 1, . . . , NΩ, i = 1, . . . , Nx,

j = 1, . . . , Ny being indexes of the frequency group, direction of motion, and x−y position

on the spatial grid, respectively. l = 1, 2, 3, 4 denotes the corner index of a spatial cell and

thus NI = 4NgNΩNyNx. The elements of φn are similarly φng,i,j so that Nφ = NgNyNx.

Each of the discrete operators is defined as follows. The (backward Euler) temporal

integration operator Th : RNI → RNI is defined as

(Th(φn,φn−1)Ī
n
)g,m,i,j,l =

1

c∆tn

(
Ī
n
g,m,i,j,l −

φn−1
g,i,j

φng,i,j
Ī
n−1
g,m,i,j,l

)
. (7.19)

The operator Knh : RNI → RNI is

(Knh(T )Ī
n
)g,m,i,j,l = κn

E,g,i,j(T )Īng,m,i,j,l. (7.20)

The source vector Q̄nh ∈ RNI has elements

(Q̄nh(T,φn))g,m,i,j,l = κn
B,g,i,j(T )B̄n

g,i,j(T,φ
n). (7.21)

The spatial (streaming) operator Lh : RNI → RNI can be split into Lh = L1,h + L2,h,

where L1,h is defined as

(L1,hĪ
n
)g,m,i,j,1

(L1,hĪ
n
)g,m,i,j,2

(L1,hĪ
n
)g,m,i,j,3

(L1,hĪ
n
)g,m,i,j,4


=


γm,i,j

Ωx,m
∆xi

0 Ωy,m
∆yj

−Ωx,m
∆xi

γm,i,j
Ωy,m
∆yj

0

0 −Ωy,m
∆yj

γm,i,j −Ωx,m
∆xi

−Ωy,m
∆yj

0 Ωx,m
∆xi

γm,i,j





Īng,m,i,j,1

Īng,m,i,j,2

Īng,m,i,j,3

Īng,m,i,j,4


, (7.22)
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where

γm,i,j =
|Ωx,m|
∆xi

+
|Ωy,m|
∆yj

. (7.23)

Using αi,j = 1− δi,j, the operator L2,h is defined such that

(L2,hĪ)g,m,ij,1 =



α1,i
2Ωx,m
∆xi

φng,i−1,j

φng,i,j
Īng,m,i−1j,2

+ α1,j
2Ωy,m
∆yj

φng,i,j−1

φng,i,j
Īng,m,ij−1,4, Ωx > 0, Ωy > 0

α1,j
2Ωy,m
∆yj

φng,i,j−1

φng,i,j
Īng,m,ij−1,4, Ωx < 0, Ωy > 0

0, Ωx < 0, Ωy < 0

α1,i
2Ωx,m
∆xi

φng,i−1,j

φng,i,j
Īng,m,i−1j,2, Ωx > 0, Ωy < 0

(7.24a)

(L2,hĪ)g,m,ij,2 =



α1,j
2Ωy,m
∆yj

φng,i,j−1

φng,i,j
Īng,m,ij−1,3, Ωx > 0, Ωy > 0

− αNx,i
2Ωx,m
∆xi

φng,i+1,j

φng,i,j
Īng,m,i+1j,1

+ α1,j
2Ωy,m
∆yj

φng,i,j−1

φng,i,j
Īng,m,ij−1,3, Ωx < 0, Ωy > 0

−αNx,i
2Ωx,m
∆xi

φng,i+1,j

φng,i,j
Īng,m,i+1j,1, Ωx < 0, Ωy < 0

0, Ωx > 0, Ωy < 0

(7.24b)

(L2,hĪ)g,m,ij,3 =



0, Ωx > 0, Ωy > 0

−αNx,i
2Ωx,m
∆xi

φng,i+1,j

φng,i,j
Īng,m,i+1j,4, Ωx < 0, Ωy > 0

− αNx,i
2Ωx,m
∆xi

φng,i+1,j

φng,i,j
Īng,m,i+1j,4

− αNy ,j
2Ωy,m
∆yj

φng,i,j+1

φng,i,j
Īng,m,ij+1,2, Ωx < 0, Ωy < 0

−αNy ,j
2Ωy,m
∆yj

φng,i,j+1

φng,i,j
Īng,m,ij+1,2, Ωx > 0, Ωy < 0

(7.24c)

(L2,hĪ)g,m,ij,4 =



α1,i
2Ωx,m
∆xi

φng,i−1,j

φng,i,j
Īng,m,i−1j,3, Ωx > 0, Ωy > 0

0, Ωx < 0, Ωy > 0

−αNy ,j
2Ωy,m
∆yj

φng,i,j+1

φng,i,j
Īng,m,ij+1,1, Ωx < 0, Ωy < 0

α1,i
2Ωx,m
∆xi

φng,i−1,j

φng,i,j
Īng,m,i−1j,3

− αNy ,j
2Ωy,m
∆yj

φng,i,j+1

φng,i,j
Īng,m,ij+1,1, Ωx > 0, Ωy < 0

(7.24d)

The boundary vector B̄h ∈ RNI which contains the boundary sources of the problem

124



assumes the following boundary conditions for the normalized radiation intensities

Īg|x=0 = Ī in
L,g =

I in
L,g

φL,g
, Ωx,m > 0, (7.25a)

Īg|y=0 = Ī in
B,g =

I in
B,g

φB,g
, Ωy,m > 0, (7.25b)

Īg|x=Lx = Ī in
R,g =

I in
R,g

φR,g
, Ωx,m < 0, (7.25c)

Īg|y=Ly = Ī in
T,g =

I in
T,g

φT,g
, Ωy,m < 0 (7.25d)

where Lx and Ly are the domain lengths in the x and y directions, respectively, and

φL,g = φg|x=0, φB,g = φg|y=0, φR,g = φg|x=Lx , φT,g = φg|y=Ly . (7.26)

Using these boundary conditions, B̄h takes the form

(B̄h)g,m,ij,1 =



δ1,i
2Ωx,m
∆xi

φnL,g,j
φng,1,j

Ī in
L,g,m,j + δ1,j

2Ωy,m
∆yj

φnB,g,i
φng,i,1

Ī in
B,g,m,i, Ωx > 0, Ωy > 0

δ1,j
2Ωy,m
∆yj

φnB,g,i
φng,i,1

Ī in
B,g,m,i, Ωx < 0, Ωy > 0

0, Ωx < 0, Ωy < 0

δ1,i
2Ωx,m
∆xi

φnL,g,j
φng,1,j

Ī in
L,g,m,j, Ωx > 0, Ωy < 0

(7.27a)

(B̄h)g,m,ij,2 =



δ1,j
2Ωy,m
∆yj

φnB,g,i
φng,i,1

Ī in
B,g,m,i, Ωx > 0, Ωy > 0

−δNx,i
2Ωx,m
∆xi

φnR,g,j
φng,Nx,j

Ī in
R,g,m,j + δ1,j

2Ωy,m
∆yj

φnB,g,i
φng,i,1

Ī in
B,g,m,i, Ωx < 0, Ωy > 0

−δNx,i
2Ωx,m
∆xi

φnR,g,j
φng,Nx,j

Ī in
R,g,m,j, Ωx < 0, Ωy < 0

0, Ωx > 0, Ωy < 0

(7.27b)

(B̄h)g,m,ij,3 =



0, Ωx > 0, Ωy > 0

−δNx,i
2Ωx,m
∆xi

φnR,g,j
φng,Nx,j

Ī in
R,g,m,j, Ωx < 0, Ωy > 0

−δNx,i
2Ωx,m
∆xi

φnR,g,j
φng,Nx,j

Ī in
R,g,m,j − δNy ,j

2Ωy,m
∆yj

φnT,g,i
φng,i,Ny

Ī in
T,g,m,i, Ωx < 0, Ωy < 0

−δNy ,j
2Ωy,m
∆yj

φnT,g,i
φng,i,Ny

Ī in
T,g,m,i, Ωx > 0, Ωy < 0

(7.27c)
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(B̄h)g,m,ij,4 =



δ1,i
2Ωx,m
∆xi

φnL,g,j
φng,1,j

Ī in
L,g,m,j, Ωx > 0, Ωy > 0

0, Ωx < 0, Ωy > 0

−δNy ,j
2Ωy,m
∆yj

φnT,g,i
φng,i,Ny

Ī in
T,g,m,i, Ωx < 0, Ωy < 0

δ1,i
2Ωx,m
∆xi

φnL,g,j
φng,1,j

Ī in
L,g,m,j − δNy ,j

2Ωy,m
∆yj

φnT,g,i
φng,i,Ny

Ī in
T,g,m,i, Ωx > 0, Ωy < 0

(7.27d)

7.3.1 Scaling Equations with Opacity

When calculating inner products of Eq. 7.18 over all phase space, one possible source of

numerical precision loss lies in the opacity function. In the multiphysical class of problems

considered, κ can span many orders of magnitude across phase space, most especially

across variations in photon frequency (see for instance, Fig. D.1). A method to reduce the

numerical effects that this introduces is to scale the discrete NBTE equations in each cell

and frequency group by κ in the same portion of phase space. This is achieved through

the operator (K̃n)−1 : RNI → RNI , defined as

(
(K̃n)−1u

)
g,m,i,j,l

=

{
1

κnE,g,i,j
ug,m,i,j,l, g ∈ Ĝ

ug,m,i,j,l, g /∈ Ĝ
(7.28)

where Ĝ ⊂ {1, . . . , Ng}. When (K̃n)−1 is applied to the discrete NBTE, each equation for

the (i, j)th spatial cell for the mth direction of motion in the gth frequency group will be

scaled by κn
E,g,i,j, if g ∈ Ĝ. One reasonable set of frequency groups to comprise Ĝ are

those whose opacities are expected to be very large. Application of this operator to the

left of Eq. 7.18 yields

(K̃n)−1

(
Th(φn,φn−1)Ī

n
+ Lh(φn)Ī

n
+Knh(T )Ī

n

)
= (K̃n)−1

(
Q̄nh(T,φn) + B̄h(φn)

)
, (7.29)

or more concisely,

Ťh(φn,φn−1)Ī
n

+ Ľh(φn)Ī
n

+ Ǩnh(T )Ī
n

= ˇ̄Qnh(T,φn) + ˇ̄Bh(φn). (7.30)
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7.3.2 Formulation of POD Basis & Petrov-Galerkin Projection

In the framework of the MLQD equations, there exist two distinct pathways to collect an

identical set of FOM snapshots for Ī, which are assembled into a snapshot matrix and

used to calculate the POD basis. The first way is to solve the target TRT problem with

the MLQD system equipped with the NBTE. The second is to solve the TRT problem

with the MLQD system equipped with the BTE and alternate boundary conditions given

in Eqs. 2.10 & 2.18, and calculate snapshots of Ī from the obtained snapshots of I. This

second procedure is the one elected to derive the following ROMs. From the solution to

the BTE discretized with the SCB scheme over Nt time steps, the cell-corner intensity

vectors are collected in the set {In}Ntn=1. The set of normalized cell-corner intensity values

{Īn}Ntn=1 can then be calculated by

Īng,m,i,j,l =
Ing,m,i,j,l

1
4

∑NΩ

m=1wm(Ing,m,i,j,1 + Ing,m,i,j,2 + Ing,m,i,j,3 + Ing,m,i,j,4)
, (7.31)

where l = 1, 2, 3, 4 and {wm}NΩ
m=1 are the angular quadrature weights associated with the

discrete-ordinates scheme. The obtained snapshot vectors are collected in chronological

order to construct following data matrix

AĪ = [Ī
1
Ī

2
. . . Ī

Nt ] ∈ RNI×Nt . (7.32)

The POD basis that optimally represents the snapshots in AĪ in the W norm (ref. Eq.

3.30) is found via the weighted snapshot matrix

ÂĪ = W1/2AĪH1/2, (7.33)

where W is the matrix of discrete phase-space integral weights that defines the inner

product 〈·, ·〉W corresponding to the continuous inner product (Eq. 6.6) which represents

an integration over phase space. H is the matrix of discrete temporal integral weights

defined by the used time integration scheme. The POD basis functions are the first k

columns of the matrix U = [u1 . . . ur] ∈ RNI×r, defined by

U = W−1/2Û, (7.34)

where r = rank(ÂĪ) and Û is the matrix whose columns hold the left singular vectors

of ÂĪ (see Sec. 3.3.1). Since the backward-Euler scheme is used to discretize the time

127



variable, H = diag(∆t1, . . . , ∆tNt). In 2D Cartesian geometry the matrix W for the

SCB scheme has a similar form to the one found in 1D slab geometry (ref. Eq. 6.16), and

is defined by

W =

Ng⊕
g=1

NΩ⊕
m=1

Ny⊕
j=1

Nx⊕
i=1

wmAi,j
4

I4, I4 = diag(1, 1, 1, 1). (7.35)

This matrix can be derived in a similar manner to that shown in Sec. 6.2.1.

Let the normalized radiation intensities be expanded in the POD basis found in Eq.

7.34 by

Ī
n
k =

k∑
`=1

λn`u`, k ≤ r. (7.36)

Substituting this expansion into Eq. 7.18 gives

k∑
`=1

[
λn`
c∆tn

(K̃n)−1u` + λn` Ľh(φn)u` + λn` Ǩnh(T )u`

]

= ˇ̄Qnh(T,φn) + ˇ̄Bh(φn) +
k∑
`=1

λn−1
`

c∆tn
(K̃n)−1ϕn � u`, (7.37)

where the definition of Th has been used, � denotes the Hadamard product and the vector

ϕn ∈ RNI has elements ϕng,m,i,j,l =
φn−1
g,i,j

φng,i,j
. Now the Petrov-Galerkin test basis is introduced

in discrete form, which will enforce optimal projection of the NBTE in the W norm

by Thm. 3.3.1. The scaled discrete residual operator for the NBTE Řn
h : RNI → RNI is

defined as

Řn
hĪ

n
= J̌ n

h Ī
n −

(
ˇ̄Qnh + ˇ̄Bh + (K̃n)−1ϕn � Ī

n−1

c∆tn

)
(7.38)

with

J̌ n
h Ī

n
=

1

c∆tn
(K̃n)−1Ī

n
+ ĽhĪ

n
+ Ǩnh Ī

n
. (7.39)

It is therefore straightforward to show that the test basis functions must be

ψ` =
dŘn

h(λn`u`)

dλn`
= J̌ n

h u`. (7.40)

Eq. 7.37 is projected onto this basis by applying the inner product 〈ψ`′ , ·〉W for all
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`′ = 1, . . . , k to obtain the following equations for {λn` }k`=1:

k∑
`=1

λn`

[
1

c∆tn
〈J̌ n

h u`′ , (K̃n)−1u`〉W + 〈J̌ n
h u`′ , Ľh(φn)u`〉W + 〈J̌ n

h u`′ , Ǩnh(T )u`〉W
]

= 〈J̌ n
h u`′ ,

ˇ̄Qnh(T,φn)〉W + 〈J̌ n
h u`′ ,

ˇ̄Bh(φn)〉W +
k∑
`=1

λn−1
`

c∆tn
〈J̌ n

h u`′ , (K̃n)−1ϕn � u`〉W ,

(7.41a)

k∑
`=1

λn−1
` 〈J̌ n

h u`′ , (K̃n)−1ϕn � u`〉W = 〈J̌ n
h u`′ , (K̃n)−1ϕn � In−1〉W , n = 1 (7.41b)

`′ = 1, . . . , k.

7.3.3 Calculation of Zeroth Moment Data

Several of the operators involved in the NBTE depend nonlinearly on the zeroth moment φ.

By definition, the test basis functions {ψ`} also have nonlinear dependence on φ (and T ).

By this fact every inner product in Eq. 7.41a requires information on the zeroth intensity

moment function. In the case where the LOQD equations are consistently discretized with

the NBTE, φ can simply be defined from the low-order solution. When an independent

discretization scheme is used however, this cannot be the case.

Let φlo = cE be the zeroth moment defined from the low-order solution. With an

independent discretization scheme (outside the limit of fine grids) φ 6= φlo. When φlo

is used in the NBTE in place of φ then implicitly the solution is Ī lo = I
φlo
6= Ī. This

solution even does not reside in the same space as the Eddington tensor, shown by a

simple calculation

f = PΩ,2Ī =
PΩ,2I

PΩ,0I
=
PΩ,2Ī

lo

φ
/
φlo

, (7.42)

where the projection operators PΩ,i are defined in Eq. 2.1.

In the case of independent discretization, φ must be stored from the FOM solution of

the considered TRT problem. For the discretizations considered here there exist three

distinct grid functions of the zeroth moment: φc, φv and φh that lie on the cell centers,

vertically aligned cell faces, and horizontally aligned cell faces, respectively. The vectors

for each of these grid functions over phase space at each instance of time are collected
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into separate snapshot matrices as the columns

Aφγ = [φ1
γ φ

2
γ . . .φNtγ ] ∈ RNgNγ×Nt , γ = v, h, c (7.43)

where Nγ is the DoF in space for a given grid function (ref. Eq. 4.2).

Compression of this data via the POD or DMD is prone to numerical issues since the

zeroth moment spans many orders of magnitude across phase space and time. Numerical

calculation of the POD or DMD will naturally limit how small the reconstructed values

can be compared to the largest magnitudes in the dataset, even at full rank. Although

this does not ordinarily pose a problem, the POD projected NBTE (Eq. 7.41a) depends

solely on ratios of the zeroth moments. As such in areas where the zeroth moment values

have been truncated to a certain precision, which can also produce negative values, these

ratios can be entirely different (and sometimes nonphysical) than what is seen in the

FOM solution. For the remainder of this work it is assumed that Aφγ for γ = v, h, c is

known and available from the FOM to any considered TRT problem.

The matrices Aφγ are stored instead of snapshot matrices for the ratios between grid

functions of φ because it is the more memory efficient option. The ratios of φ required to

define the discrete NBTE can be represented as five distinct grid functions representing
φni,j
φni+1,j

,
φni,j

φn
i+ 1

2 ,j

,
φni,j
φni,j+1

,
φni,j

φn
i,j+ 1

2

and
φn−1
i,j

φni,j
. The grid functions of the zeroth moment at the

cell centers must also be stored to define Qh. Storing this information as a series of

snapshots would require roughly double the amount of memory space as just storing the

grid functions of φ.

7.4 Formulation of the Reduced Order Model

The class of ROMs derived in this chapter model TRT physics with the POD-Petrov-

Galerkin (POD-PG) projected NBTE combined with the multilevel system of LOQD

equations coupled with the MEB equation. This model is henceforth referred to as the

POD-PG NBTE-QD ROMs, is formulated by

1. The POD-Petrov-Galerkin projected high-order NBTE (Eq. 7.41a)

2. The multigroup LOQD system (Eqs. 2.3) with BCs in Eq. 2.10

3. The effective grey LOQD system (Eqs. 2.13) with BCs in Eq. 2.18

4. TheMEB equation (Eq. 2.20)
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Calculation of the POD basis functions and zeroth intensity moments used in these

ROMs can be done before solving any TRT problems and comprises the method’s offline

stage. The online stage of the ROMs when used to solve TRT problems is outlined in Alg.

6. Since the test basis depends nonlinearly on T , all inner products must be continuously

updated during the iteration process. A maximum number of high-order iterations s is

defined as smax which can be used to further reduce the ROM’s computational cost while

incurring some penalty to the accuracy.

At the beginning of each time step T , fg and Gg are initialized with the previous time

step solution (or initial condition). Each grid function of φ is reconstructed for the current

time instant by φnγ = H(tn)Aφγ , where H(tn) returns the column of Aφγ that corresponds

to time tn, or if no column exists for the given time the columns nearest in time to tn are

interpolated to tn. The low-order system is iterated to convergence with the initialized

quantities at the zeroth s iteration. At each following s iteration, the POD projected

NBTE is solved to update fg and Gg before the low-order system is solved again.
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Algorithm 6: Obtaining the solution to TRT problems with the POD-PG
NBTE-QD ROM

Input: k, {u`}k`=1, Aφγ γ = v, h, c

n = 0
while tn ≤ tend do

n = n+ 1

T (0) = T n−1

f(0)
g = fn−1

g , G
(0)
g = Gn−1

g

Compute φnγ = H(tn)Aφγ

s = −1
while s < smax,

‖T (s) − T (s−1)‖ > ε1‖T (s)‖+ ε2,
‖E(s) − E(s−1)‖ > ε1‖E(s)‖+ ε2 do

s = s+ 1

if s ≥ 1 then
Update {ψ`}k`=1 with T (s−1), φnγ

Update all inner products in Eq. 7.41a with {ψ`}k`=1, T (s−1), φnγ

Solve the projected NBTE (Eq. 7.41a) for {λ`}k`=1

Compute Ī
n
k =

∑k
i=` λ

n
`u`

Compute f(s)
g = PΩ,2Ī

n
k,g, G

(s)
g = 〈|nΓ ·Ω|, Īnk,g〉Ω

end
q = 0

while ‖T (s, q) − T (s, q−1)‖ > ε1‖T (s, q)‖+ ε2,
‖E(s, q) − E(s, q−1)‖ > ε1‖E(s, q)‖+ ε2 do

q = q + 1

Update κE,g,κB,g, κ̃R,g, Bg with T (s−1, q)

Solve multigroup LOQD equations (Eqs. 2.3) with f(s)
g , G

(s)
g for

E
(s, q)
g , F (s, q)

g

Compute spectrum-averaged closures for the effective grey problem
with E

(s, q)
g , F (s, q)

g

Solve effective grey problem (Eqs. 2.13 and 2.20) for
T (s, q), E(s, q), F (s, q)

end

T (s) ← T (s, q)

end

T n ← T (s)

fng ← f(s)
g , Gn

g ← G
(s)
g

end
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7.5 Numerical Results

In this section the POD-PG NBTE-QD ROM’s performance and abilities are demonstrated

through the use of numerical testing. There is a necessity for this process borne out of

the current lack of complete theoretical results. What can be proved in theory includes

(i) the POD basis formed in Sec. 7.3.2 will optimally represent the NBTE solution in

the W norm for any given rank, (ii) the test basis formed in Sec. 7.3.2 enforces that the

solution to Eq. 7.41a will have minimal error in the W norm. Results needed to relate

the relationship between Eq. 7.41a and the (multiphysical) low-order system do not yet

exist. No parameterization or hyper-reduction is considered in the following analysis, as

the viability of those pieces depends on having a robust ROM to be built upon, and this

is the subject of current investigations.

The POD-PG NBTE ROM is tested for how accurately it can reproduce the FOM

solution to a single TRT problem, using the same full-order solution to create its databases.

The ROM is also tested for how predictably it behaves with variations in the parameter ξ

that determines the rank of expansion. If the ROM’s accuracy and cost can be reliably

predicted based on ξ then its use in parametric applications is much more practical. In this

way the model can be dynamically tuned for needed accuracy and available computational

resources.

When generating full-order solutions in the method’s offline stage to create the POD

bases, the MLQD method with the BTE and BCs defined in Eqs. 2.10 & 2.18 is used.

The zeroth intensity moment is calculated from the full-order radiation intensities, which

are then normalized to find Ī. Since the NBTE discretization scheme derived in Sec. 7.1.1

is consistent with the SCB scheme for the BTE, this solution for Ī is equivalent to that

of the MLQD method with the NBTE. Both smax =∞ and smax = 1 are considered for

the FOM (ref. Alg. 1), so that two solution databases can be considered: one that has

been fully converged in its iterations, and another using only a single transport sweep per

time step. This latter option can be used where a cheaper offline stage is desired.

The F-C Test A is used to evaluate the POD-PG NBTE-QD ROM (see Sec. 4.4.1),

using a smaller interval of time and coarser mesh in space. T 0 = 1 eV and T in = 1 KeV

are used. A time interval of t ∈ [0, 3ns] is considered, discretized into Nt = 150 uniform

time steps ∆t = 2× 10−2 ns. A uniform grid of 10× 10 cells (i.e. Nx = Ny = 10) with

side lengths of ∆x = ∆y = 0.6 cm is used to discretize the slab. The number of DoF

describing Ī
n

at each instance of time tn is NI = 9.792 × 105. The number of DoF in

phase space and time is equal to NINt = 1.4688× 108.
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F-C Tests A and B (see Secs. 4.4.1 & 6.4) use a temporal interval of t ∈ [0, 6ns].

The region of t ∈ [3, 6ns] is in the near steady-state regime and adds little complexity to

the problem. If this ROM can be proven robust for the complicated and rapid transient

regimes of this problem, the latter temporal region will not pose a challenge. Without the

use of hyper-reduction techniques, adding these times to the ROM database (doubling

the database in size) can result in an excessive increase in the posed computational load.

The same is true for refinements in the spatial grid.

When generating solutions to the F-C problem, the following convergence criteria

are used (ref. Algs. 1 & 6): ε1 = 10−14 and ε2 = 10−15. Also when applying the opacity

normalization operator (K̃n)−1 (see Sec. 7.3.1) we define Ĝ = {1, . . . , Ng}. The F-C opacity

function spans many orders of magnitude across frequency and temperature (see Fig. D.1),

but κE,1 � κE,g for groups g = 2, . . . , Ng within the used group structure. It is this first

(diffusive) energy group that tends to limit the precision at which the projection inner

products can be calculated. Furthermore the high-frequency groups have small opacities,

and it is these groups that dominate the problem’s dynamics. Inverting all groups ensures

that the most important frequency ranges have their effects preserved above all others.

7.5.1 Analysis of POD Databases & Singular Values

The singular value distributions of the weighted snapshot matrices (ref. Eq. 7.33) holding

Ī from the FOM solution are shown in Fig. 7.1. The solutions found with both smax =∞
and smax = 1 are shown. Notably, both plots are nearly identical. This is reasonable

given that a single transport sweep in the context of the MLQD methodology should

well approximate the converged solution. In both plots there are three discernible regions

of sharp decrease in singular value magnitudes, each followed by a region where the

rate of decrease slows dramatically. The third and last region of stagnation is where the

limits of numerical precision become dominant and no further reduction is possible. Tab.

7.1 displays the ranks of expansion k that correspond to several different values of ξ,

calculated via Eq. 3.12. The values shown are calculated for the FOM solution using

smax =∞. The ranks for the solution using smax = 1 are identical and thus not shown.

Fig. 7.2 plots the s iteration counts for the POD-PG NBTE-QD ROM using smax =∞
for different values of ξ at each time step. These iteration counts can be compared to

those shown in Fig. D.5, which plots the s iteration counts for the MLQD method using

the BCs defined in Eqs. 2.10 & 2.18. Most time steps are solved in 3 or 4 s iterations

using the POD-PG NBTE-QD ROM, with only a single time step requiring 5 iterations
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Figure 7.1: Singular value spectra of the weighted snapshot matrices holding Ī solutions
of the FOM using smax =∞ and smax = 1

ξ k

10−2 9

10−4 32

10−6 45

10−8 88

10−10 117

10−12 128

10−14 132

10−16 149

Table 7.1: Ranks k for the POD expansion of Ī corresponding to different values of ξ
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Figure 7.2: High-order (NBTE or s) iteration count per time step using the POD-PG
NBTE-QD ROM (ref. Alg. 6) with smax =∞ and various ξ values.
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for several ξ. The iteration count actually increases as ξ is decreased; for ξ ≥ 10−8 most

time steps are solved with 3 projected NBTE solves, wheras for ξ ≤ 10−10 most time

steps require 4 solves.

7.5.2 Error Analysis & Convergence of ROMs

The accuracy of the POD-PG NBTE-QD ROM w.r.t. the FOM solution in discrete

space is now analyzed, along with the convergence behavior of its errors with ξ. Two

cases are investigated: (i) smax = ∞ and (ii) smax = 1 for both the offline and online

stages of the ROM. Let the POD-PG NBTE-QD ROM using smax = s1 for the offline

full-order iterations and smax = s2 for the online ROM iterations be written concisely as

model(s1|s2). Therefore case (i) is model(∞|∞) and case (ii) is model(1|1). In each case

the online stage of the ROM is consistent with the data generated in the offline stage,

and therefore both models are expected to see convergence in their errors with ξ to the

FOM solution used in generating their POD bases.

Figs. 7.3 & 7.4 plot the relative errors of the material temperature (T ) and total

radiation energy density (E) in the 2-norm over space at every instance of time for

model(∞|∞) and model(1|1), respectively. The errors are calculated w.r.t. the FOM

solution used to generate their respective databases (i.e. using smax =∞ and smax = 1,

respectively). Each curve on the plots corresponds to a different value of ξ used to define

the ROM. As ξ is decreased, the ROM errors decrease uniformly in time and stagnate

after ξ < 10−10 at a level less than 10−12 which can be considered converged to the FOM

solution within the bounds of finite precision. For all considered ξ except for ξ = 10−2, the

relative errors for both T and E increase rapidly in the beginning stage of the problem

before leveling off to a stable level that only slightly increases with time. This behavior

is attributed to the fact that the POD projected NBTE retains a source term from

the previous time step due to its temporal discretization scheme, which will lead to an

accumulating error effect at each instance of time until saturation occurs.

Figs. 7.5 & 7.6 plot the same relative errors for model(∞|∞) and model(1|1), respec-

tively, vs ξ instead of vs time. Each curve in these plots corresponds to a select instance of

time. In this view the behavior of the ROM errors with ξ is much more clearly represented.

Here let the ROM errors be written as the function ε(x) = ‖xFOM−xROM‖2
‖xFOM‖2

. Then for both

models, the primary behavior is that ε(E) ≈ ε(T ) ≈ ξ · 10−2, until stagnation occurs on

the level of ε(E) ≈ ε(T ) ≈ 10−12

The results shown so far demonstrate that the POD-PG NBTE-QD ROM can reproduce
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Figure 7.3: Relative errors w.r.t. the FOM using smax =∞ (ref. Alg. 1) in the 2-norm of
the POD-PG NBTE ROM using smax =∞ in its offline and online stages (ref. Alg. 6) for
several ξ, plotted vs time
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Figure 7.4: Relative errors w.r.t. the FOM using smax = 1 (ref. Alg. 1) in the 2-norm of
the POD-PG NBTE ROM using smax = 1 in its offline and online stages (ref. Alg. 6) for
several ξ, plotted vs time

the FOM solution with high levels of accuracy in the 2-norm sense across space at every

instance of time. Furthermore, as ξ is decreased the ROM solution also predictably

converges to the FOM solution that was used to generate the applied POD basis functions.

The next step in this analysis is to demonstrate whether the 2-norm accuracy of this

ROM is indicative of the local error levels in space. To this end plots will be shown of the

relative errors w.r.t. the FOM solution over the entire spatial domain for select instances
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Figure 7.5: Relative errors w.r.t. the FOM using smax =∞ (ref. Alg. 1) in the 2-norm of
the POD-PG NBTE ROM using smax =∞ in its offline and online stages (ref. Alg. 6) at
several times, plotted vs ξ
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Figure 7.6: Relative errors w.r.t. the FOM using smax = 1 (ref. Alg. 1) in the 2-norm of
the POD-PG NBTE ROM using smax = 1 in its offline and online stages (ref. Alg. 6) at
several times, plotted vs ξ

of time. Only model(∞|∞) is considered here, and restricted to ξ = 10−2, 10−4. Local

error analysis for model(1|1) yields essentially the same results compared to model(∞|∞).

The two largest considered values for ξ represent the lowest-rank expansions of Ī and

are not only the most practical ξ for application but will incur the largest errors. These

shown errors will converge with decreasing ξ, following the behavior shown in the 2-norm

already. Fig. 7.7 plots the spatially local relative errors in T and E for model(∞|∞) with

ξ = 10−2, 10−4 at times of t = 1, 2, 3 ns. This figure takes the form of two tables that
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display the relative cell-wise error in the ROM across F-C test domain. The first (top)

table shows errors in the material temperature (T ) and the second (bottom) shows errors

in the total radiation energy density (E). Each row corresponds to a different value of ξ

and each column to the specific instance of time. Although only three instances of time

are shown, the color scale shown to the right of each row depicts the entire range of values

for all time instances. In accordance with Fig. 7.3, the highest levels of spatial errors

are found at the final time step with ξ = 10−4 and are relatively uniform across space

and time for ξ = 10−2. Note that the highest errors for ξ = 10−2 are found in the range

t ∈ [0.06, 0.26 ns] and exist on the right half of the domain. There exist no sharp spikes

in the local error levels and the ROM is able to reproduce the FOM solution at all spatial

points to a level close to the 2-norm errors shown in Fig. 7.3.
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Figure 7.7: Cell-wise relative error in material temperature (T ) and total radiation energy
density (E) over the spatial domain at times t=1, 2, 3 ns for the POD-PG NBTE ROM
using smax =∞ for ξ = 10−2, 10−4.
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7.5.3 Performance of the ROM using a Single NBTE Iteration

In this section, the ROM using smax = 1 in its online stage will be evaluated w.r.t.

the full-order solution found using smax =∞ to determine how well this cheaper ROM

can reproduce the fully-converged F-C test solution (and in the limit of fine grids, the

continuous TRT solution). Cases when the POD basis functions are generated using

smax = ∞ and smax = 1 are considered, i.e. model(∞|1) and model(1|1). This is done

to quantify effects on the ROM accuracy stemming from the quality of used POD basis

functions.

Fig. 7.8 plots the relative errors of T and E in the 2-norm over space at every instance

of time for model(∞|1) w.r.t. the FOM solution generated with smax =∞. Fig. 7.9 plots

the same errors calculated for the model(1|1) solution. The error levels in both T and E

for all ξ are nearly identical between the two models. Only ξ ≥ 10−8 is shown in both plots,

as the error levels saturate by ξ = 10−8 and no longer decrease with further increases

in rank. This saturation level in accuracy for both models is actually the same relative

difference between the FOM solutions using smax =∞ and smax = 1. Note that ξ = 10−2

is the only value that provides a solution whose errors are above the saturation point for

all time instances. When ξ = 10−4, the saturation point is met for times between 0 and

1.5 ns, where the largest errors are present. This is because as the problem evolves in time,

the transients evolve more slowly and can be better captured by a single-iteration scheme.

These results establish that when the POD-PG NBTE-QD ROM uses smax = 1 in its

online stage, there is little to no accuracy lost when smax = 1 is also used in the offline

stage to generate the ROM data, compared to using smax =∞ in the offline stage. This

model is also able to converge in error w.r.t. the fully converged FOM solution up to the

level that is seen with the FOM solution generated using smax = 1, regardless of smax used

in the offline stage. In other words, the POD-PG NBTE-QD ROM (with high enough

rank) finds the same solution as the FOM using smax = 1 when only a single s iteration is

performed in its online stage.

For the remainder of this chapter only model(∞|∞) and model(1|1) are considered,

since the solutions generated for model(∞|1) do not provide anything new when compared

to model(1|1). Fig. 7.10 plots the local spatial errors of the model(1|1) solution using

ξ = 10−2, 10−4 relative to the FOM with smax =∞ in the same format as Fig. 7.7, using

different select instances of time to display. Since model(1|1) tends to have the lowest

accuracy in the rapidly evolving initial regime, times t = 0.02, 0.2, 0.5 ns are sampled.

The shown color bars still encapsulate the entire range of errors for the whole temporal
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interval. Once again there are no sharp peaks in the error levels across the spatial domain,

and the values at all instances of time (encapsulated in the color scales to the right) are

contained in a neighborhood of the 2-norm errors shown in Fig. 7.9.
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Figure 7.8: Relative errors w.r.t. the FOM using smax =∞ (ref. Alg. 1) in the 2-norm
of the POD-PG NBTE-QD ROM using smax = 1 in its online stage (ref. Alg. 6) and
smax =∞ in its offline stage for several ξ, plotted vs time

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (ns)

10-7

10-6

10-5

10-4

10-3

10-2

||T
F
O
M
−
T
R
O
M
|| 2

||T
F
O
M
|| 2

ξ= 10−2

ξ= 10−4

ξ= 10−6

ξ= 10−8

(a) Material Temperature

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (ns)

10-7

10-6

10-5

10-4

10-3

10-2

||E
F
O
M
−
E
R
O
M
|| 2

||E
F
O
M
|| 2

ξ= 10−2

ξ= 10−4

ξ= 10−6

ξ= 10−8

(b) Radiation Energy Density

Figure 7.9: Relative errors w.r.t. the FOM using smax =∞ (ref. Alg. 1) in the 2-norm of
the POD-PG NBTE-QD ROM using smax = 1 in both its online (ref. Alg. 6) and offline
stages for several ξ, plotted vs time
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Figure 7.10: Cell-wise relative error in material temperature (T ) and total radiation
energy density (E) over the spatial domain at times t=0.02, 0.2, 0.5 ns for the POD-PG
NBTE-QD ROM using smax = 1 in its online and offline stages for ξ = 10−2, 10−4. Errors
are calculated w.r.t. the FOM using smax =∞ (ref. Alg. 1)
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7.6 Reproduction of Physical Quantities

In this section the POD-PG NBTE-QD ROM is evaluated against the FOM in how well

it can recreate important TRT physics. The first subject of study is the breakout time of

radiation (see Sec. 4.5 for a description). Accurate simulation of this integral physical

quantity depends on a model’s ability to recreate the correct nonlinear wavefront of

radiation as it propagates across the problem domain. Afterwards the frequency spectrum

of radiation produced by the POD-PG NBTE-QD ROM is surveyed. This is a higher-

fidelity measure of a ROM’s success, and is a physical quantity of critical importance in

applications involving radiation spectroscopy. It is assumed when referring to the FOM

that smax =∞ for the remainder of this analysis.

7.6.1 Modeling of Radiation Wave Breakout

Let F̄R, ĒR and T̄R be the total radiation flux and energy densities and the material

temperature integrated along the right boundary of the F-C test as defined in Eqs. 4.11.

The FOM solution for these quantities is shown in Fig. 4.13. Each of F̄R, ĒR and T̄R

represent a different measure of the amount of radiation that has reached the drive-

opposite side of the test domain over time, which is what might be measured by a detector

during an experiment.

Fig. 7.11 plots the relative error for each quantity produced by model(∞|∞) at each

instance of time w.r.t. the FOM solution. All considered values of ξ are included here,

and similar behavior to Fig. 7.3 is seen. Each quantity is observed to converge to the

FOM solution as ξ decreases, and errors propagate in time with a slight rate of increase

for ξ ≤ 10−4. The errors in F̄R, ĒR and T̄R are generally higher than the 2-norm error of

T and E for any given ξ before the limits of numerical precision become dominant. This

difference in error levels is between one and two orders of magnitude. This is not to say

however, that the breakout quantities are of low accuracy. The observed errors are all

approximately bounded by ξ.

Fig. 7.12 plots the relative error for each quantity produced by model(1|1) at each

instance of time w.r.t. the FOM solution, only including ξ ≥ 10−8. As before further

decreases in ξ do not decrease the observed error. For ξ = 10−2, the errors are largely the

same for both model(1|1) and model(∞|∞). The same is true for the latter half of the

temporal interval with ξ = 10−4. Otherwise for ξ ≤ 10−4 across the entire time window

model(1|1) can successfully reproduce each breakout quantity to below an order of 10−4.
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Figure 7.11: Relative error for the POD-PG NBTE-QD ROMs using smax =∞ in the
offline and online stages with various ξ values for data located at and integrated over the
right boundary of the domain.

7.6.2 Radiation Spectrum

The frequency spectrum of radiation is now analyzed by calculating errors in the reduced-

order groupwise radiation energy densities. These energy densities are averaged over the

frequency interval they represent to produce Ēg = Eg
νg−νg−1

. Three points on the spatial

domain are chosen for comparisons with the FOM: (i) the midpoint of the domain, (ii)

the midpoint of the right boundary, (iii) the bottom corner of the right boundary. These

points represent well a spectrum of different levels of anisotropy in the radiation intensity

distribution. The FOM solution for Ēg is given in Fig. 4.17, and is described in Sec. 4.5.2.

Only zoomed-in plots of the frequency spectrum are shown here, disregarding the final
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Figure 7.12: Relative error for the POD-PG NBTE-QD ROMs using smax = 1 in the
offline and online stages with various ξ values for data located at and integrated over the
right boundary of the domain.

point in the spectrum whose errors do not deviate significantly from the other points.

Figs. 7.13 and 7.14 plot the relative errors of the average multigroup radiation energy

densities produced by model(∞|∞) with ξ = 10−2, 10−4 at several instances of time.

These points in time are chosen to sample important regions in the time interval of the

F-C test (see for example Fig. 4.13). When ξ = 10−2 the earliest time steps have the

largest levels of error, whereas with ξ = 10−4 it is the later times that display the largest

errors. As ξ is decreased further this behavior of frequency errors increasing with time

continues, and is an artifact of the results shown in Fig. 7.3 which demonstrates that the

overall ROM solution loses accuracy as time moves on. The ROM’s accuracy increases

with frequency for most time steps, with the largest errors present in low frequency groups.
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This is especially prevalent at the corner point of the right boundary, where the most

anisotropy is present. This effect demonstrates that the POD-PG NBTE ROM is well

equipped to reproduce the transport effects and streaming regimes of TRT problems even

with very low rank expansions.
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Figure 7.13: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = ∞ and ξ = 10−2 located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figure 7.14: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = ∞ and ξ = 10−4 located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figs. 7.15 and 7.16 plot the same frequency errors for the solution of model(1|1) with

ξ = 10−2, 10−4. In this case the earliest time steps show the largest levels of error for all ξ,

as should be expected from the previous results in Fig. 7.9. When ξ = 10−2 the accuracy

is fairly level across the frequency range, except for the boundary corner point where

accuracy increases with frequency. For ξ = 10−4, accuracy increases with frequency at all

considered spatial points. This is the same behavior as seen for all lower values of ξ. As

with model(∞|∞), model(1|1) can well approximate the streaming regime and anisotropy

present in the F-C test with low rank.
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Figure 7.15: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = 1 and ξ = 10−2 located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Figure 7.16: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = 1 and ξ = 10−4 located at (i) the domain midpoint, (ii) the
midpoint of the right boundary, (iii) the corner of the right boundary, taken at several
time instances.
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Temporal integrals are now presented of the so far investigated spectral errors. Instead

of analyzing error plots for specific instances of time, the 2-norm and ∞-norm of this

data calculated the interval t ∈ [0, 3ns] will be shown. Having already explored how these

errors evolve with the problem’s transients, this view is provided to give a clear sense of

the average behavior. Figs. 7.17, 7.18 and 7.19 plot the 2-norm and ∞-norm (in time) of

the relative errors in the model(∞|∞) solution. Each figure represents one of the three

chosen points on the spatial domain. All considered values of ξ are shown here to give a

complete picture of how the frequency errors converge in a temporal-integral sense. For

all ξ ≤ 10−4 and before numerical precision becomes limiting, the high frequency groups

are again reproduced with significantly higher accuracy than low frequency groups. This

effect becomes more pronounced as the solution becomes more anisotropic. Furthermore

each energy group decreases in error when ξ is decreased.
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Figure 7.17: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax =∞ located at the domain midpoint in the 2-norm and ∞-norm
along the temporal interval t ∈ [0, 3ns]
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Figure 7.18: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax =∞ located at the midpoint of the right boundary in the 2-norm
and ∞-norm along the temporal interval t ∈ [0, 3ns]
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Figure 7.19: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax =∞ located at the corner of the right boundary in the 2-norm and
∞-norm along the temporal interval t ∈ [0, 3ns]
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Figs. 7.20, 7.21 and 7.22 plot the 2-norm and ∞-norm (in time) of the relative errors

in the model(1|1) solution. Each figure represents one of the three chosen points on

the spatial domain. Only ξ ≥ 10−8 is shown, as the error saturates at ξ = 10−8. When

ξ = 10−2, these error plots are essentially the same as for model(∞|∞). At ξ = 10−4 the

high-frequency groups are recreated to almost the saturation point of error, while the low

frequency ranges have elevated levels of error at points on the right domain boundary.

At the domain midpoint most groups are found at the near saturation point of error for

ξ = 10−4. Errors converge uniformly along the frequency axis with decreases in ξ to the

saturation point, although decreases in ξ past a value of 10−4 essentially only reduce the

error of low-frequency diffusive groups of radiation. At the saturation point all groups are

found with errors below 10−4, most lying below 10−5.
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Figure 7.20: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = 1 located at the domain midpoint in the 2-norm and ∞-norm
along the temporal interval t ∈ [0, 3ns]
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Figure 7.21: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = 1 located at the midpoint of the right boundary in the 2-norm
and ∞-norm along the temporal interval t ∈ [0, 3ns]
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Figure 7.22: Relative errors of the radiation spectrum produced by the POD-PG NBTE-
QD ROM using smax = 1 located at the corner of the right boundary in the 2-norm and
∞-norm along the temporal interval t ∈ [0, 3ns]
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7.7 Discussion

In this chapter a ROM is presented for TRT problems constructed using a POD-Petrov-

Galerkin projection of the normalized Boltzmann equation, whose solution constructs

closures for the LOQD moment equations. The model is tested on the 2-dimensional

F-C test problem. One POD basis describing the normalized intensities is used that can

describe all encountered physical regimes. The ROM is demonstrated to reproduce the

FOM solution to the F-C test with high accuracy while using very low-rank expansions

of the high-order intensities. Errors in the ROM solution are shown to decrease linearly

with the parameter ξ that determines rank. Both the breakout time of radiation in the

F-C test and the spectrum of radiation are found with high accuracy at low rank. Similar

performance of the ROM is observed when using only a single high-order iteration at each

time step.

By projecting the BTE that solves for a normalized radiation intensity distribution,

and scaling the discrete equations with the opacity function, numerical noise in the POD

basis and projection procedure were minimized and the resulting ROM was shown to

have no significant sensitivities or numerical issues. This is also in part due to the choice

of a Petrov-Galerkin projection scheme as opposed to a Galerkin projection scheme.

Projection of the NBTE with a POD-Galerkin scheme has been investigated and found to

be somewhat less accurate than the used Petrov-Galerkin projection. It is worth noting

that although the Petrov-Galerkin projection scheme has higher computational complexity

compared to the Galerkin projection scheme due to the nonlinear dependence of the

introduced test basis functions with the solution, with the application of hyper-reduction

techniques [153, 154, 140] the computational cost of both schemes will be essentially the

same.

The robustness and accuracy of the developed ROM make extensions of the model

attractive for parametric applications, and for classes of radiative transfer problems with

other involved multiphysics.
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CHAPTER

8

IMPLICIT METHODS WITH REDUCED

MEMORY FOR THERMAL RADIATIVE

TRANSFER

This chapter presents an approximate implicit method with reduced memory for the BTE

in TRT problems in the context of the MLQD methodology. The memory requirements

in TRT problems is largely determined by the dimensionality of grid functions of the

radiation intensity. The backward Euler time integration scheme is considered, where

grid functions of the intensity must be stored from the previous time step at each time.

In this numerical method the high-dimensional intensity from the previous time level is

approximated by means of the low-rank POD. A variant of this method is also presented,

where the POD is found for the remainder term of the P2 expansion of the intensity

function. This method enables a reduction in the storage requirements for time dependent

problems of TRT. The results presented in this chapter have been published in [87]

and presented at the 2021 International Conference on Mathematics and Computational

Methods Applied to Nuclear Science and Engineering.
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8.1 Fundamental Approach

Temporal discretization schemes for the BTE involve the discrete solution at the previous

time level. Consider the multigroup BTE (Eq. 1.6) discretized with the backward-Euler

(BE) time integration scheme

1

c∆tn
(Ing − In−1

g ) + Ω ·∇Ing + κn
E,g(T )Ing = κn

B,g(T )Bn
g (T ). (8.1)

In 3D geometry this requires storing in memory a 6-dimensional grid function that

approximates the transport solution on a given mesh in phase space. There are different ap-

proaches for developing approximate methods for time-dependent transport problems that

reduce memory requirements [155, 156, 57, 157, 158]. For instance, the α-approximation of

the intensity in time reduces the BTE to a transport equation of steady-state form with a

modified opacity [155]. This approximation assumes that the intensity varies exponentially

over each time interval. The approximate rate of change in time can be obtained by means

of the solution of low-order moment equations. As such, the α-approximation rids one of

the need to store the high-dimensional solution from the previous time level [155]. This

approximation method for the time-dependent BTE demonstrated good accuracy in TRT

problems [99, 109]. Analysis showed that there are some limitations for the BTE in the

α-approximation [157].

Recently, approximate implicit methods with reduced memory for the time-dependent

BTE have been proposed [158]. They use the modified backward Euler (MBE) time

integration scheme that applies the POD of the transport solution from the previous time

step to compress the data and reduce memory requirements [30, 33, 138]. The accuracy

of the method depends on the order of the low-rank POD of the discrete transport

solution. The error decreases as rank increases. The MBE scheme is applied here within

the framework of the MLQD method for solving TRT problems [99, 101, 103].

In the approximate implicit scheme, the multigroup BTE is discretized by the MBE

time integration scheme given by [158]

1

c∆tn
(Ing − În−1

g ) + Ω ·∇Ing + κn
E,g(T )Ing = κn

B,g(T )Bn
g (T ), (8.2)

where the grid functions of group intensity În−1
g are approximated by the low-rank POD

of the solution In−1
g computed at the time step n− 1.

1D slab geometry is considered here, and the BTE is discretized in space with the
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step-characteristics (SC) scheme. The SC scheme for the Eq. 8.2 is formulated for the

cell-edge
(
Ing,m,i+1/2

)
and cell-average

(
Ing,m,i

)
angular fluxes by means of the detailed

particle balance equation and weighted auxiliary relation

∆xi
c∆tn

(
Ing,m,i − În−1

g,m,i

)
+ µm

(
Ing,m,i+1/2 − Ing,m,i−1/2

)
+ κn

E,g,iI
n
g,m,i∆xi = 2πκn

B,g,iB
n
g,i∆xi , (8.3a)

Ing,m,i = γng,m,iI
n
g,m,i−1/2 + (1− γng,m,i)Ing,m,i+1/2 , (8.3b)

γng,m,i =
1

τng,m,i
− 1

eτ
n
g,m,i − 1

, τng,m,i =
1

µm

(
κn
E,g,i + (c∆tn)−1

)
∆xi , (8.3c)

where µm is the discrete directional cosine.

8.2 Approximation of the Specific Intensity

8.2.1 POD of the Intensity

The MBE scheme needs to store the vector of intensities in phase space In ∈ RNI where

NI = NgNΩN
Γ
I and NΓ

I is the intensity DoF in space (on the domain Γ). Let Ing,m ∈ RNΓ
I

be the vector of intensities for the discrete angle m = 1, . . . , NΩ in group g = 1, . . . , Ng.

At the nth time step. The intensity grid function can be used to construct the following

data matrix:

A
Ig
Ω = [Ing,1 . . . I

n
g,NΩ

] ∈ RNΓ
I×NΩ , (8.4)

which takes the form of a matrix of snapshots in angle, as opposed to the traditional

temporal snapshots [30]. The grid function of group intensities in space and angle can

now be approximated by the low-rank POD [33, 138] by calculating the SVD of A
Ig
Ω as

A
Ig
Ω = USV>, (8.5)

where S = diag(σ1, . . . , σr) ∈ Rr×r is the matrix of singular values, U = [u1 . . . ur] ∈
RNΓ

I×r and V = [v1 . . . vr] ∈ RNΩ×r are the matrices of left and right singular vectors

respectively, and r = rank(A
Ig
Ω ) (see Sec. 3.1). The approximate group intensity În ≈ In
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is defined by the rank-k POD of A
Ig
Ω given by Eq. 3.9, or equivalently:

A
Ig
Ω,k =

k∑
`=1

σ`u` ⊗ (v`)
> , k ≤ r , where A

Ig
Ω,k = [Îng,1 . . . Î

n
g,NΩ

] . (8.6)

In this manner the vectors of group intensities for each discrete direction are each

represented by the expansion in Eq. 3.7 with no centering (ā = 0). Here the case when all

groups use the same rank k is considered. The low-rank approximation (Eq. 8.6) requires

storage of the first k singular values and associated left and right singular vectors. Thus,

this approximation leads to memory allocation of a data set with the number of elements

kNg(N
Γ
I +NΩ + 1). The ranks k can be chosen according to various criteria.

8.2.2 POD of the Remainder Term

Let us now cast the group intensity at each direction as its P2 approximation and define

the resulting remainder term as

∆Im,i = Im,i −
1

2

(
φ̃i + 3µmF̃i +

5

4

(
3µ2

m − 1
)(

3fi − 1
)
φ̃i

)
, (8.7)

where the subscripts g and n have been neglected for brevity, i = 1, . . . ,NΓ
I is the index

of spatial DoF and the P2 expansion coefficients are calculated by the solution of the

high-order BTE, namely,

φ̃i =

NΩ∑
m=1

Im,iwm , F̃i =

NΩ∑
m=1

µmIm,iwm , fi =

∑NΩ

m=1 µ
2
mIm,iwm∑NΩ

m=1 Im,iwm
. (8.8)

Let ∆Im,g ∈ RNΓ
I be the vector of the discrete grid function ∆Ing,m,i for the angle m in

group g. This grid function is described by the data matrices constructed of its angular

snapshots in each group

A
∆Ig
Ω = [∆Ing,1 . . .∆I

n
g,NΩ

] ∈ RNΓ
I×NΩ , (8.9)

The SVD of these matrices is

A
∆Ig
Ω = U′S′(V′)>, (8.10)

where S′ = diag(σ′1, . . . , σ
′
r′) ∈ Rr′×r′ , U′ = [u′1 . . . u′r′ ] ∈ RNΓ

I×r
′
, V′ = [v′1 . . . v′r′ ] ∈

RNΩ×r′ , and r′ = rank(A
∆Ig
Ω ) (see Sec. 3.1). An approximation of the group remainder
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term ∆În ≈ ∆In is defined by the rank-k POD of A
∆Ig
Ω given by

A
∆Ig
Ω,k =

k∑
`=1

σ′`u
′
` ⊗ (v′`)

> , k ≤ r′ , where A
∆Ig
Ω,k = [∆Îng,1 . . . ∆̂I

n
g,NΩ

] . (8.11)

This approximation can be interpreted as expanding the P2 remainder of the group

intensities at each discrete angle with Eq. 3.7 where ā = 0. Approximate intensities are

calculated as the sum of the P2 approximation and rank-k estimated remainder term

Îm,i =
1

2

(
φ̃i + 3µmF̃i +

5

4

(
3µ2

m − 1
)(

3fi − 1
)
φ̃i

)
+ ∆Îm,i . (8.12)

This approximation needs to store in memory Ng[k(NΓ
I +NΩ+1)+2NΓ

I ] elements (assuming

all groups use k POD expansion terms) that includes in each group (i) k(NΓ
I +NΩ + 1)

elements for the remainder term POD representation and (ii) 2NΓ
I elements for vectors of

two angular moments φ̃, F̃ .

8.3 Numerical Results

Let the developed scheme be denoted as the MBE-SC scheme, whose algorithm for TRT

problems is outlined in Alg. 7. Analysis of the presented numerical method using the

MBE-SC scheme to reduce memory requirements is done using the F-C test in 1D slab

geometry (ref. Appendix D). The F-C Test B is used here (see Sec. 6.4.1). The SC

scheme is used to discretize the BTE in space with NΓ
I = Nx = 100 cells.

The discrete solution of the MLQD method with the MBE-SC scheme, namely, the

total radiation energy density Ek
h and temperature T kh of the approximate implicit method

with the rank k POD is compared to the discrete solution Th and Eh of the MLQD method

with the BE-SC scheme on the corresponding grid in the phase space and time. Numerical

results of the MBE-SC scheme that uses a rank-k approximation of the previous time level

radiation intensities in all groups are presented in Fig. 8.1. The plots show the relative

error in reproducing the discrete solution in ∞-norm, namely,
||Th−Tkh ||∞
||Th||∞

and
||Eh−Ekh||∞
||Eh||∞

for the complete range of k = 1, . . . , r. The results obtained with the MBE-SC scheme

using the rank-k POD of the remainder term of the previous time step intensities in each

group are shown in Fig. 8.2. Note that in this test, the full rank is r = r′ = NΩ = 8.

Results with the full-rank POD (k = 8) of both methods illustrate that they accurately

reproduce the discrete solution of the MLQD method with the BE-SC scheme on the
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Algorithm 7: MLQD algorithm for TRT problems with the MBE scheme

n = 0
while tn ≤ tend

n = n+ 1

T (0) = T n−1

f(0)
g = fn−1

g

s = −1

while ‖T (s) − T (s−1)‖ > ε1‖T (s)‖+ ε2,
‖E(s) − E(s−1)‖ > ε1‖E(s)‖+ ε2 do

s = s+ 1

if s ≥ 1 then
Update κE,g,κB,g, Bg with T (s−1)

if using P2 remainder then

Let În−1
g be represented by φ̃g, F̃g, f

n−1
g and rank-k POD of of

∆In−1
g

end
else

Let În−1
g be represented by the rank-k POD of In−1

g

end

Solve the BTE with the MBE scheme (Eq. 8.2) for I
(s)
g using În−1

g

Compute f(s)
g from I

(s)
g (Eq. 2.4)

end
` = 0

while ‖T (s, `) − T (s, `−1)‖ > ε1‖T (s, `)‖+ ε2,
‖E(s, `) − E(s, `−1)‖ > ε1‖E(s, `)‖+ ε2 do

` = `+ 1

Update κE,g,κB,g, κ̃R,g, Bg with T (s−1, `)

Solve multigroup LOQD equations (Eqs. 2.3) with f(s)
g for E

(s, `)
g , F (s, `)

g

Compute spectrum-averaged closures for the effective grey problem
with E

(s, `)
g , F (s, `)

g

Solve effective grey problem (Eqs. 2.13 and 2.20) for
T (s, `), E(s, `), F (s, `)

end

T (s) ← T (s, `)

end
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T n ← T (s)

fng ← f(s)
g

if using P2 remainder then

Calculate φ̃g, F̃g from I
(s)
g (Eq. 8.8)

Calculate ∆Ing with P2 terms and Ing = I
(s)
g

Obtain rank-k POD representation of ∆Ing
end
else

Calculate rank-k POD representation of Ing = I
(s)
g

end

end

given grid as expected. In case k = 5, 6, 7 the solution of the method with the POD of the

remainder term has very small error. This is due to explicit accounting for the first three

Legendre moments of the intensity (Eq. 8.12). The singular eigenvalues σ′` for ` = 5, 6, 7

in groups are very small. In this test problem, the method with POD of the remainder

term is predominantly more accurate than to the method with POD of the intensity for
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Figure 8.1: Relative error in ∞-norm of the solution of the MLQD method with the
MBE-SC scheme and POD of the intensity compared to the discrete solution on the
corresponding grid in phase space and time.
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Figure 8.2: Relative error in ∞-norm of the solution of the MLQD method with the
MBE-SC scheme and POD of the remainder term compared to the discrete solution on
the corresponding grid in phase space and time.
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Figure 8.3: The error of the method with POD of the remainder term (POD-RT) over
the error of the method with POD of intensity (POD-I).
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the given rank k. However, it uses more data for the same rank k. Fig. 8.3 shows the ratio

between errors of the method with the POD of the remainder term (POD-RT) and the

one with the POD of the intensity (POD-I).

The gains in memory allocation depend on both the number of spatial cells Nx and

angular directions NΩ and hence are problem specific. For the phase-space grid used in the

test, the size of the data set stored by this MLQD method with the BTE discretized the

BE-SC scheme at the end of each time step is Ng(Nx×NΩ+2×Nx+1)+2×Nx+1 = 17218.

This includes the data for (i) the multigroup BTE, (ii) the multigroup and grey LOQD

equations, and (iii) the MEB equation. Tab. 8.1 shows the percentage reduction of required

data storage sizes of the MLQD method with each of the two versions of the MBE-SC

scheme compared to that of the MLQD method with the BE-SC scheme. Negative values

indicate an increase in storage compared to the BE-SC scheme. In this test, the method

with POD of intensities shows gains in memory for all ranks less than full rank, i.e.

k = 1, . . . , 7. The method with POD of the remainder term reduces memory allocation

for k = 1, . . . , 5.

Rank (k) 1 2 3 4 5 6 7
POD-I 68.2 57.5 46.7 35.9 25.2 14.4 3.7

POD-RT 48.5 37.7 27.0 16.2 5.4 -5.3 -16.1

Table 8.1: Reduction [%] in memory storage of previous step data of the MBE ROM
compared to the FOM (Nx=100, NΩ=8).

Figs. 8.4 and 8.5 present the results of spatial mesh refinement for the fixed time step

size ∆t = 2×10−2 ns. They show the relative error of E in ∞-norm for uniform meshes

with ∆x = 0.24, 0.12, 0.06, 0.03 cm. The number of DoF of the discrete intensity increases

with refinement of spatial mesh. The results show that the change in the relative error

decreases with refinement. The factor of change on fine meshes approaches one. This

indicates that the error due to low-rank POD of data representing intensities tends to a

limit as ∆x→ 0 for the fixed time step ∆t. Figs. 8.6 and 8.7 present the relative error of

E in ∞-norm for the numerical solution computed with refined time steps (∆t = 4×10−2,

2×10−2, 10−2, 5×10−3 ns) on the spatial mesh with ∆x = 6×10−2 cm. These results show

increase in the relative error in reproducing the discrete solution on the given grids. More

analysis is needed to study properties of the methods.
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Figure 8.4: Results of refinement of spatial mesh for the MLQD method with the MBE-SC
scheme and POD of the intensity for ∆t = 2× 10−2.
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Figure 8.5: Results of spatial mesh refinement for the MLQD method with the MBE-SC
scheme and POD of the remainder term for ∆t = 2× 10−2 ns.

8.4 Discussion

In this chapter implicit methods with an approximate time evolution operator in the BTE

and reduced memory for TRT problems are presented. The obtained results showed that

the proposed methods reproduce the numerical solution of the underlying discretization

method on the given phase-space grid with various degrees of accuracy while reducing

storage of data between time steps. The accuracy depends on the rank of the POD of

the data representing intensity from the previous time level. It is possible to achieve

accuracy that is good for practical routine simulations and significantly reduce memory

usage. There are extra computational costs due to calculations of the POD of intensities.

The proposed approximate implicit methods are intended for computer architectures on

which one can take advantage of extra computations for reduction of memory storage.

The proposed approach can be applied to various time integration methods and different

kinds of transport problems.
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Figure 8.6: Results of time step refinement the MLQD method with the MBE-SC scheme
and POD of the intensity ∆x = 6× 10−2 cm.
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Figure 8.7: Results of time step refinement the MLQD method with the MBE-SC scheme
and POD of the remainder term for ∆x = 6× 10−2 cm.
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CHAPTER

9

CONCLUSIONS

In this work four distinct reduced order models and one numerical method with memory

reduction for thermal radiative transfer are developed. Each model is founded on the

nonlinear projective approach, or the method of moments, and makes use of the multilevel

set of LOQD moment equations coupled to the MEB equation. The LOQD equations

are closed with the Eddington tensor that is computed with the shape function of

normalized radiation intensities. The ROMs developed in this work use various data-based

methodologies to construct advanced and accurate estimations for these closures. The

numerical method with reduced memory uses a data-based methodology to approximate

grid functions of high-order solutions at previous time levels.

9.1 Overarching Conclusions

Each of the four developed ROMs is shown to effectively reduce the dimensionality of

the TRT problem. The models have been demonstrated to be robust for this nonlinear

multiphysical class of problems, where a focus has been placed on supersonic radiation

shock type problems. All of the models can solve the TRT problem with a spectrum of
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accuracy levels depending on the corresponding rank of approximation used. With low rank,

each model still finds good accuracy in the solution. The developed method for memory

reduction in TRT simulations was shown to effectively reduce storage requirements, while

maintaining acceptable levels of accuracy.

9.2 Summary of Results

The DET class of ROMs (presented in Ch. 4) approximates the Eddington tensor with

projection-based data-driven methods, specifically considering the POD, DMD and DMD-

E. Numerical results showed that with each of the three methods, the DET ROMs could

reproduce the FOM TRT solution to high accuracy with very low rank representations

of the Eddington tensor. With the POD and DMD the ROM accuracy was found to

have a linear relationship with the parameter that determines rank, thus allowing for

a-priori predictions of ROM performance. Errors in the ROM solutions were shown to be

relatively uniform across all space, frequency and time. The parameterized DET ROM

with the POD was developed based on parameterization with respect to the inverse cube

of a characteristic temperature. This produced relatively uniform accuracy across the

entire considered parameter space.

The TCA class of ROMs (presented in Ch. 5) approximates the Eddington tensor over

all phase space and time at once by constructing a linear radiative transfer problem whose

opacities and emission source are evaluated using a diffusion solution over the phase space

and time. Numerical results showed that this ROM improves upon the accuracy of various

diffusion models for TRT by 1-2 orders of magnitude in space and time. The low-frequency

range of radiation is improved upon by the same amount. In the high-frequency range

where there are significant transport effects present, the TCA ROM improves upon the

diffusion model accuracy by up to 4-5 orders of magnitude.

The POD-G BTE-QD class of ROMs (presented in Ch. 6) uses a low-dimensional

POD projection of the BTE to estimate the Eddington tensor. The solution to this

projected BTE poses low computational burden to calculate and represents the high-

order intensities as a low dimensional expansion of global basis functions in phase space.

Numerical results demonstrated that this ROM can solve TRT problems with a range of

accuracies depending on the used rank of approximation. Low levels of error are produced

even with very low rank representations of the high order intensities. Errors are shown to

converge linearly with the parameter that determines rank.
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The POD-PG NBTE-QD class of ROMs (presented in Ch. 7) uses a low-dimensional

POD projection of the NBTE to estimate the Eddington tensor. A discretization scheme

for the NBTE is also presented that is consistent with a scheme for the BTE. The

projected NBTE provides a low-dimensional representation of the normalized radiation

intensities that determine the Eddington tensor by a linear superposition. Numerical

results showed that this ROM can solve TRT problems with a large spectrum of accuracies

that depends on the rank of expansion for the normalized intensities. With very low

dimensional representations of the NBTE (and normalized intensities) this model finds

accurate solutions to the TRT problem. The solution errors converge linearly with the

parameter that determines rank. This model was also found to produce accurate solutions

to the TRT problem while only using a single iteration of the POD projected NBTE at

each instant of time. Error levels along the frequency spectrum of radiation decrease in

the high frequency ranges.

The MBE-SC scheme for the BTE (presented in Ch. 8) approximates the radiation

intensities at the previous time level with a low-rank POD expansion. Numerical results

demonstrate that the method effectively reduces the memory requirements of TRT

simulations while maintaining several different levels of accuracy compared to the BE-SC

scheme based on the rank of POD expansion. The reduction in memory invokes extra

computational cost at each time step, making this method attractive for computing

architectures that can take advantage of using extra computation to reduce needed

memory storage.

9.3 Future Work

All developed ROMs are constructed in such a way that allows for natural extension to a

wide class of multiphysical high-energy density problems, such as radiation hydrodynamics

problems. The effective grey low-order moment system can be coupled to any set of involved

multiphysics equations. The necessary changes to each model include the incorporation

of any additional terms to account for the coupled multiphysics effects. For instance, a

conduction term could be added to the MEB equation with no additional changes to the

system of moment equations. This also holds true for the MBE-SC numerical method.

For the DET, TCA and POD-PG NBTE-QD models, an extension into 3D geometry is

another natural next step. The same can be said for the MBE-SC scheme and POD-G

BTE-QD ROM into multi-D geometry.
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Parameterization can be considered as a future research item for all ROMs, which

have each been shown robust and accurate to the target class of problems. This is a

promising direction for further development given the performance and quality of each

model. For this purpose, one can consider reduced basis techniques [42, 69] or interpolation

procedures, including manifold interpolation [159, 160]. The parameterization developed

for the DET ROMs in Ch. 4 would likely perform well for each of the other developed

ROMs. The basic approach of implicit time approximation with reduced memory can also

be applied to different spatial discretizations or time integrators.
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APPENDIX

A

ACRONYMS

A summary of all acronyms & abbreviations is documented in Table A.1.

Table A.1: A summary of acronyms & abbreviations used in alphabetical order.

Acronym Abbreviation

Algorithm Alg.

Boltzmann Transport Equation BTE

Data-driven Eddington Tensor DET

Dynamic Mode Decomposition DMD

Deep Neural Network DNN

Degrees of Freedom DoF

Eddington Tensor ET

Equation Eq.

Equilibrium-subtracted Dynamic Mode Decomposition DMD-E

Figure Fig.

Flux-Limited Diffusion FLD

Full-Order Model FOM

Low-Order Quasidiffusion LOQD

186



Multilevel Quasidiffusion MLQD

Normalized Boltzmann Transport Equation NBTE

Proper Orthogonal Decomposition POD

POD-Galerkin POD-G

POD-Petrov-Galerkin POD-PG

Quasidiffusion QD

Reduced-Order Model ROM

Section Sec.

Table Tab.

Transport Corrected Approximation TCA

Thermal Radiative Transfer TRT

Variable Eddington Factor VEF

With Respect To w.r.t.
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APPENDIX

B

VARIABLES & CONSTANTS

A summary of all variables & constants is documented in Table B.1.

Table B.1: A summary of common variables & constants and their abbreviations in
alphabetical order.

Variable Abbreviation

Boltzmann constant k

Directional cosine µ

Eddington tensor f

Kronecker delta δi,j

Material energy density ε

Material heat capacity cv

Material opacity κ
Material temperature T

Normalized radiation intensity Ī

Outward normal to Γ nΓ

Particle direction of motion vector Ω

Photon frequency ν
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Planck’s constant h

Planckian distribution function B

Radiation constant aR

Spatial domain Γ

Spatial domain boundary ∂Γ

Spatial domain length (x direction) Lx

Spatial domain length (y direction) Ly

Spatial position r

Stefan-Boltzmann constant σR

Radiation energy density E

Radiation flux F

Radiation intensity I

Relative POD error in Frobenius norm ξ

Spatial position r

Speed of light c

Time t

Unit sphere S
Zeroth intensity moment φ
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APPENDIX

C

RAY TRACING ON 2D ORTHOGONAL

SPATIAL GRIDS

We have an orthogonal grid whose vertices are located at the coordinates (cxi , c
y
j ) for

i = 0, . . . , Nx and j = 0, . . . , Ny. If {∆xi}Nxi=1 and {∆yj}Nyj=1 are the cell widths in the ex

and ey directions, these coordinates are defined as

cxi = cxi−1 + ∆xi, i = 1, . . . Nx, (C.1)

cyj = cyj−1 + ∆yj, j = 1, . . . Ny, (C.2)

cx0 = cy0 = 0.

The area of each cell is Aij = ∆xi∆yj . The set of particle directions is {Ωm}NΩ
m=1. Let Ω̄m

be the projection of Ωm onto the x-y plane. The angle between Ω̄m and the positive x

axis is

θm =

{
arctan(Ωm,y

Ωm,x
) Ωm,y > 0, Ωm,x > 0

π − arctan(−Ωm,y
Ωm,x

) Ωm,y > 0, Ωm,x < 0
(C.3)

The goal of this formulation is to trace characteristics along an underlying spatial grid
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in such a way that no one characteristic crosses multiple cells at once (i.e. characteristics

may not travel through mesh vertices). To accomplish this, an initial distribution of

characteristics will be calculated such that each cell vertex defines a boundary between

characteristics width-wise. In other words, each boundary between characteristics inter-

cepts a single cell vertex. An example initial distribution of characteristics is depicted in

Fig. C.1.

Figure C.1: Characteristic mesh for some direction traced over a 3x3 uniform grid

This yields (Nx + 1)(Ny + 1) boundary lines which can be described with the equations

gm,i,j(x) = y = bm,i,j + smx, bm,i,j = cyj − smcxi , (C.4)

i = 0, . . . Nx, j = 0, . . . Ny,

with slopes

sm =



tan(θm) θm ∈ [0, π
4
]

1
/

tan(π
2
− θm) θm ∈ [π

4
, π

2
]

−1
/

tan(θm − π
2
) θm ∈ [π

2
, 3π

4
]

− tan(π − θm) θm ∈ [3π
4
, π]

(C.5)

The midlines along each characteristic are then described by

tm,k(x) = y =
b̂m,k + b̂m,k+1

2
+ smx, k = 1, . . . (Nx + 1)(Ny + 1)− 1,
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where the set {b̂m,k}(Nx+1)(Ny+1)
k=1 contains the values of bm,i,j in ascending order

{b̂m,k}(Nx+1)(Ny+1)
k=1 = {bm,k ∈ {bm,i,j}Nx,Nyi,j=1 | bm,k < bm,k+1, k = 1, . . . , (Nx+1)(Ny+1)−1}.

(C.6)

Each characteristic is finally segmented at each cell interface encountered in the

underlying spatial mesh, yielding a series of connected segments that each lie over a single

spatial cell. An example set of characteristic segments for a 2× 2 spatial grid is shown in

Fig. C.2.

-0.2-0.2 0.20.2 0.40.4 0.60.6 0.80.8 11 1.21.2 1.41.4 1.61.6 1.81.8 22 2.22.2 2.42.4 2.62.6 2.82.8 33 3.23.2 3.43.4 3.63.6 3.83.8 44 4.24.2 4.44.4 4.64.6 4.84.8 55

0.60.6

0.80.8

11
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1.41.4

1.61.6

1.81.8

22

2.22.2

2.42.4
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2.82.8

33

3.23.2

IIJJ

I'I'

Figure C.2: Characteristics traced over a sample 2x2 grid for θ = π
8

The mesh of characteristics is refined by introducing a maximum width wmax. Any

characteristics calculated from the initial ray tracing procedure that have a width wk >

wmax are split into 2 characteristics of width wk
2

. Characteristics are continuously split

into even halves by width until none are wider than wmax.
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APPENDIX

D

THE FLECK-CUMMINGS NUMERICAL

TEST PROBLEM

Numerical testing for each of the ROMs presented in this work is carried out on the well-

known Fleck-Cummings (F-C) problem [142]. Both 1D slab and 2D Cartesian geometries

are considered. In 1D geometry this F-C test takes the form of a homogeneous slab 6 cm in

length. In 2D geometry the F-C test is fashioned as a square homogeneous domain in the

x− y plane, 6 cm in length on both sides. The domain is initially at a temperature of T 0,

the left boundary of the domain is subject to incoming radiation with blackbody spectrum

at a temperature of T in, and there is no incoming radiation at the other boundaries. The

material is characterized by an opacity of

κ(ν, T ) =
κ∗

ν3

(
1− e−

ν
T

)
, κ∗ = 27× 109

[
eV3

cm

]
(D.1)

where ν and T are measured in eV, and a material energy density that is linear in

temperature

ε(T ) = cvT, (D.2)
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with volumetric material heat capacity cv = 0.5917aR(T in)3 with units cm−3. Fig. D.1

plots the opacity from Eq. D.1 against photon energy for several material temperatures.

The considered ranges for ν and T are typical for the F-C test.

100 101 102 103 104 105

Photon energy ν (eV)

10-4

10-2

100

102

104

106

108

1010

(ν
,T

)

T= 104 eV
T= 103 eV
T= 102 eV
T= 101 eV
T= 100 eV

Figure D.1: The F-C test spectral opacity κ(ν, T ) plotted vs photon frequency for several
material temperatures.

The nominal parameters for this test are T 0 = 1 eV and T in = 1 KeV. This creates an

initial condition with a large discontinuity at the left boundary. Both T and E take the

form of a nonlinear wave that first rapidly forms on the left boundary before propagating

to the right. After this the domain is continuously heated. Eventually the solution reaches

a regime close to steady state. Some discrete solutions to this F-C test (obtained via the

MLQD method, see Sec. 2.1) for the material temperature and total radiation energy

density for T 0 = 1 eV and T in = 1 KeV are depicted in Figs. D.2 and D.3. Fig. D.2

shows the solution in 2D Cartesian geometry at times t = 1, 2, 3 ns over the entire spatial

domain. Figure D.3 shows the solution in 1D slab geometry for several instants of time.

Note that this 1D solution is a close approximation to the midline (y = 3 cm) of the 2D

solution. In both cases the BTE was discretized in space with the SCB scheme (ref. Secs.

2.2 & 2.3.1). In the 2D case, a uniform grid of 20 × 20 cells was used to discretize the

domain and The Abu-Shumays angular quadrature set q461214 with 36 discrete directions

per quadrant [143] is used to discretize in angle. In the 1D case, the spatial domain was

discretized into 60 uniformly distributed cells and the double S4 Gauss quadrature set is

used to discretize the angular direction. All numerical tests use the 17 frequency group

structure defined in Tab. D.1. This group structure is created to capture well the Planck
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Figure D.2: Solution for the material temperature (T ) and total radiation energy density
(E) of the F-C test problem in 2D Cartesian geometry with T 0 = 1 eV and T in = 1 KeV
over the spatial domain at times t=1, 2, 3 ns. The BTE is discretized with the SCB scheme
and low-order equations are discretized with a finite volumes scheme.

(a) Material Temperature (b) Radiation Energy Density

Figure D.3: Solution for the material temperature (T ) and total radiation energy density
(E) of the F-C test problem in 1D slab geometry with T 0 = 1 eV and T in = 1 KeV.
Several instants of time are pictured. The BTE is discretized with the SCB scheme and
low-order equations are discretized with a finite volumes scheme.
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spectrum at the boundary temperature B(ν, T in) at the nominal value. All presented

methods also use the same implicit time integration scheme (backward-Euler) and solve

for the time interval t ∈ [0, tend] with uniform time steps ∆t = 2 × 10−2 ns. Note that

in 2D geometry with the considered grids, when the BTE is discretized in space with

the conservative method of characteristics (ref. Sec. 2.3.2), the F-C solution for E and T

differs from that shown Fig. D.2 at an order of 10−2 − 10−3 and no distinct qualitative

differences can be easily noticed.

g 1 2 3 4 5 6 7 8 9
νg [KeV] 0.7075 1.415 2.123 2.830 3.538 4.245 5.129 6.014 6.898

g 10 11 12 13 14 15 16 17
νg [KeV] 7.783 8.667 9.551 10.44 11.32 12.20 13.09 1×107

Table D.1: Upper boundaries for each frequency group

The F-C test was chosen as the platform for investigating the numerical performance

of all ROMs developed in this work for several reasons. At the nominal values for T 0

and T in, the initial condition for this test manifests as a large discontinuity on the left

boundary. Resolving this discontinuity, and the ensuing rapid evolution of the radiation

wavefront on the left boundary is a challenge. The wavefront then propagates across the

test domain until it reaches the right boundary. Several physical regimes are encountered

during the evolution of the F-C test in different energy ranges, since the opacity function

varies across a wide range magnitudes in both ν and T . Radiation in low-frequency ranges

resides primarily in the diffusive regime, while higher frequency radiation exists mostly in

the streaming regime. Each portion of the domain once heated also experiences effects

of both local and non-local radiation emitted from the nearby material and boundary

source, respectively.

The high-order iteration counts (s iterations in Alg. 1) for the 2D F-C test as described

above solved with the MLQD method are shown in Figs. D.4 and D.5. The only difference

between the two plots is in the low-order boundary conditions. The method in Fig. D.4 is

the default MLQD formulation as described in Sec. 2.1. Fig. D.5 shows iteration counts

for the MLQD method that uses the alternative BCs defined in Eqs. 2.10 & 2.18.
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Figure D.4: High-order (BTE or s) iteration count per time step using the MLQD method
(see Sec. 2.1 & Alg. 1) for the 2D F-C test problem with T 0 = 1 eV and T in = 1 KeV.
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Figure D.5: High-order (BTE or s) iteration count per time step using the MLQD method
(see Sec. 2.1 & Alg. 1) equipped with alternative BCs defined in Eqs. 2.10 & 2.18 for the
2D F-C test problem with T 0 = 1 eV and T in = 1 KeV.
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APPENDIX

E

DIMENSIONLESS EQUATIONS FOR

GREY TRT PROBLEMS WITH

FLECK-CUMMINGS OPACITY

In this appendix, a dimensionless analysis is performed on the LOQD and MEB equations

describing the grey TRT problem. Characteristic parameters of the TRT problem are

identified that will influence the TRT solution via scaling relationships. The F-C test

problem described in Appendix D is given consideration to establish specific relationships

between the F-C test parameters and the TRT solution.

The primary goal of this analysis is to identify the essential manner in which moments

of the radiation intensities can be described using characteristic quantities of the TRT

problem. Energy exchange between radiation and matter occurs on the grey scale (see Eq.

1.3) and the fundamental behavior of the TRT problem is driven by the grey radiation
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energy density and flux

E(r, t) =
1

c

∫ ∞
0

∫
4π

I(r,Ω, ν, t) dΩdν, (E.1)

F (r, t) =

∫ ∞
0

∫
4π

ΩI(r,Ω, ν, t) dΩdν, (E.2)

which are governed by the grey LOQD equations

∂E

∂t
+ ∇ · F + cκ(T )E = 4πκ(T )B(T ), (E.3a)

1

c

∂F

∂t
+ c∇ · (fE) + κ(T )F = 0, (E.3b)

closed with the grey Eddington (QD) tensor

f(r, t) =

∫∞
0

∫
4π

(Ω⊗Ω)I(r,Ω, ν, t) dΩdν∫∞
0

∫
4π
I(r,Ω, ν, t) dΩdν

. (E.4)

The grey LOQD equations are coupled with the MEB equation cast in terms of the grey

unknowns as

∂ε(T )

∂t
= cκ(T )E − 4πκ(T )B(T ). (E.5)

κ(T ) is the grey opacity and the Planckian function B(T ) =
∫∞

0
B(ν, T ) dν is

B(T ) =
σR
π
T 4, (E.6)

where B(ν, T ) is defined in Eq. 1.5.

Dimensionless forms of the grey LOQD and MEB equations are now derived to

investigate how the fundamental quantities that govern the TRT problem are related to

certain characteristic variables. Specifically, these equations are scaled with respect to the

characteristic width of the spatial domain (L) and temperature that represents energy

deposition in the domain (T̂ ). Here consideration is for the case with a linear material

energy density

ε(T ) = cvT, (E.7)

where the volumetric heat capacity cv has units cm−3, and opacity function of the following
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form:

κ(T ) =
κ0

T p
, p ≥ 0, (E.8)

where κ0 is some constant. Dimensionless variables for space and time are defined as

ρ =
r

L
, τ =

c

L
t. (E.9)

Dimensionless dependent variables are thus defined as

E(ρ, τ) = c
E(r, t)

B̂
, F(ρ, τ) =

F (r, t)

B̂
, θ(ρ, τ) =

T (r, t)

T̂
, (E.10)

where B̂ = B(T̂ ). Lastly dimensionless forms of various parameters and functions are

introduced

σ =
Lκ0

T̂ p
, η =

πcvc

σRT̂ 3
, β =

B

B̂
= θ4. (E.11)

It is important to recognize that the Eddington tensor f is a dimensionless quantity by

definition (ref. Eq. E.4). In fact, applying a similar scaling as above to the radiation

intensities to derive a dimensionless form of the BTE will not have any effect on f. Only

the necessary scaling relationships for the low-order system that governs our quantities of

interest (E, F , T ) are considered. A change of variables is performed on the radiation

energy balance equation (Eq. E.3a) by introducing the relations in Eq. E.10 to get

B̂c

cL

∂E

∂τ
+
B̂

L
∇ρ · F +

κ0

T̂ pθp
B̂E = 4π

κ0

T̂ pθp
B, (E.12)

which when recombined becomes the dimensionless radiation energy balance equation

∂E

∂τ
+ ∇ρ · F +

σ

θp
E = 4π

σ

θp
β(θ). (E.13)

The variables in Eq. E.10 are similarly substituted into the radiation momentum balance

equation (Eq. E.3b) to find

B̂c

cL

∂F

∂τ
+
B̂

L
∇ρ · (fE) +

κ0

T̂ pθp
B̂F = 0, (E.14)
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which when recombined becomes the dimensionless radiation momentum balance equation

∂F

∂τ
+ ∇ρ · (fE) +

σ

θp
F = 0. (E.15)

The scalings in Eq. E.10 applied to the MEB equation (Eq. E.5) with a material energy

density of the form in Eq. E.7 yields

cvcT̂

L

∂θ

∂τ
=

κ0

T̂ pθp
(B̂E− 4πB). (E.16)

This equation can be recombined to form

cvcT̂

B̂

∂θ

∂τ
=

σ

θp
(E− 4πβ(θ)), (E.17)

which is equivalent to the following equation, which is the dimensionless MEB equation

η
∂θ

∂τ
=

σ

θp
(E− 4πβ(θ)). (E.18)

Equations E.13, E.15 and E.18 comprise a dimensionless description of the grey TRT

problem. Each of these equations is seen to scale with the quantity σ defined in Eq. E.11.

The function σ
θp

can actually be interpreted as the dimensionless opacity of the TRT

problem and will impact the solution behavior in the same way as κ(T ). The solution

will then effectively vary with the TRT problem’s characteristics as a function of T̂−p.

Consider for example the F-C test defined in Appendix D. Using the spectral opacity

κ(ν, T ) defined for this test problem (Eq. D.1), the characteristic grey opacity can be

calculated as

κ(T ) =

∫∞
0

κ(ν, T )B(ν, T ) dν∫∞
0
B(ν, T ) dν

, (E.19)

which when evaluated takes the form

κ(T ) =
κ̃
T 3

, (E.20)

where

κ̃ =
κ∗∫∞

0
x3

ex−1
dx

=
15κ∗

π4

[
eV3

cm

]
. (E.21)

The grey solution of the F-C test will then in principle scale with T̂−3, where T̂ might be

defined as the temperature of incoming radiation (radiation drive temperature) T in.
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