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Introduction

Radiative transfer is the physical process of energy transfer via the propagation,
emission and absorption of photon radiation in the host medium

Radiative transfer becomes the dominant mode of energy redistribution in
materials at extreme temperatures, and is an essential piece of physics for many
phenomena spanning several fields

high-energy density physics
astrophysics
plasma physics
atmospheric science

These phenomena are described by complex multiphysical systems of differential
equations (radiation hydrodynamics)
The particle transport physics is modeled by the Boltzmann transport equation
(BTE)
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Challenges in Simulation of Particle Transport Problems

The numerical simulation of mutiphysical particle transport problems faces several
challenges

High-dimensionality
Strong nonlinearity
Strong coupling of equations
Multi-scale characterization
Distinct characteristic behavior in different energy ranges
System of equations of different types
Integro-differential BTE

The BTE is especially challenging to solve

Hyperbolic differential operator
The solution at any point depends on the solution everywhere in phase space
due to the integral operator
The solution is high-dimensional

The BTE largely influences the dimensionality of these problems
Reduced order models (ROMs) for the BTE are commonly employed to reduce the
cost of multiphysics simulations involving radiative transfer
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Model Order Reduction for the BTE

Some ROMs have seen widespread adoption for their usefulness and simplicity

Diffusion-based models like flux limited diffusion (FLD)
P1, P1/3, P3
Minerbo models

However, the accuracy of these models is limited
The development of advanced ROMs for the BTE that can achieve both
computational efficiency and high accuracy is an active field of research
Recently substantial research efforts have been made towards developing
data-driven ROMs for Boltzmann transport
Many advanced methods for data-driven model order reduction were originally
developed in the fluid dynamics community
The majority of these ROMs focus on linear particle transport problems

Many questions remain for nonlinear problems of high energy density physics
(radiation hydrodynamics problems)

How to preserve and reproduce essential features of fundamental physics
Dealing with multiscale behavior
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Fundamental Approach

Nonlinear projective approach

interpretation
nonlinear method of moments
multigrid approach

Known to give advantage in multiphysical, multiscale applications

The BTE is coupled with a hierarchy of low-order moment equations

Each moment system is exactly closed through nonlinear functionals of the
BTE solution (e.g. the Eddington tensor)
Moment equations are conservation equations for integral (low-dimensional)
quantities
Moment equations account for different scales of the problem
Multiphysics equations are coupled to moment equations on the same
dimensional scale

Data-driven methods of approximation to estimate closures for low-order equations

proper orthogonal decomposition (POD)
dynamic mode decomposition (DMD)
neural network estimators
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Nonlinear Thermal Radiative Transfer Problem
Prototypes of these ROMs are designed for the fundamental
thermal radiative transfer (TRT) problem

Supersonic radiation flow problem neglecting material motion, photon
scattering, heat conduction and external sources

The high-order multigroup Boltzmann transport equation (BTE)

1
c

∂Ig (r, Ω, t)
∂t + Ω ·∇Ig (r, Ω, t) + κg (T )Ig (r, Ω, t) = κg (T )Bg (T )

r ∈ G , for all ΩΩΩ, g = 1, . . . , Ng , t ≥ t0,

Ig |r∈∂G = I in
g , ΩΩΩ · eeen < 0, t ≥ t0,

Ig |t=t0 = I0
g , r ∈ G , for all ΩΩΩ,

r - spatial position, ΩΩΩ - direction of particle motion, g - photon frequency
group, t - time, Ig (r, Ω, t) - specific intensity of photons in the group g

The material energy balance (MEB) equation

∂ε(T )
∂t =

Ng∑
g=1

∫
4π

κg (T )
(
Ig (r, Ω, t)− Bg (T )

)
dΩ , T |t=t0 =T 0(r), for r∈G .
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Nonlinear Projective Approach for TRT
Multilevel quasidiffusion (QD) equations:

High order BTE: LI = Q[T ]
Multigroup QD equations: K[f]ζ = q[T ], ζ = PI

Effective grey QD equations: K̄[φ]ζ̄ = q̄[T ], ζ̄ = P̄ζ

Material Energy Balance: RT = H[I]

Unknowns in projected space:

ζ = (Eg , Fg ), Eg = 1
c

∫
4π

Ig dΩ, Fg =
∫

4π

ΩIg dΩ

ζ̄ = (E , F ), E =
∑

g

Eg , F =
∑

g

Fg

Closures of equations:

fg [I] =
∫

4π
Ω⊗ΩIg dΩ∫

4π
Ig dΩ

=

(
fxx,g fxy,g fxz,g
fxy,g fyy,g fyz,g
fxz,g fyz,g fzz,g

)
, φ[Eg , Fg ] =

∑
g αg βg∑

g βg
, β = Eg , Fg

J. M. Coale (NCSU) Los Alamos National Laboratory Janurary 4, 2022 8 / 31



Nonlinear Projective Approach for TRT
Multilevel quasidiffusion (QD) equations:

High order BTE: LI = Q[T ]
Multigroup QD equations: K[f]ζ = q[T ], ζ = PI

Effective grey QD equations: K̄[φ]ζ̄ = q̄[T ], ζ̄ = P̄ζ

Material Energy Balance: RT = H̃[ζ]

Unknowns in projected space:

ζ = (Eg , Fg ), Eg = 1
c

∫
4π

Ig dΩ, Fg =
∫

4π

ΩIg dΩ

ζ̄ = (E , F ), E =
∑

g

Eg , F =
∑

g

Fg

Closures of equations:

fg [I] =
∫

4π
Ω⊗ΩIg dΩ∫

4π
Ig dΩ

=

(
fxx,g fxy,g fxz,g
fxy,g fyy,g fyz,g
fxz,g fyz,g fzz,g

)
, φ[Eg , Fg ] =

∑
g αg βg∑

g βg
, β = Eg , Fg

J. M. Coale (NCSU) Los Alamos National Laboratory Janurary 4, 2022 8 / 31



Nonlinear Projective Approach for TRT
Multilevel quasidiffusion (QD) equations:

High order BTE: LI = Q[T ]
Multigroup QD equations: K[f]ζ = q[T ], ζ = PI

Effective grey QD equations: K̄[φ]ζ̄ = q̄[T ], ζ̄ = P̄ζ

Material Energy Balance: RT = Ĥ[ζ̄]
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Model Using Data-Driven Approximation of Closures

Approximation of closure: f̃ = G[f∗], f∗ known
Multigroup QD equations: K[̃f]ζ = q[T ], ζ = PI

Effective grey QD equations: K̄[φ]ζ̄ = q̄[T ], ζ̄ = P̄ζ

Material Energy Balance: RT = Ĥ[ζ̄]

Use data-driven methods to define the operator G
G will allow for efficient compression and approximation of data

Available methods include:

Proper orthogonal decomposition
Dynamic mode decomposition
Neural networks
etc.
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Approximation of Eddington Tensor

Projection, compression of data

Given: full-order solution to some TRT problem for Nt time steps, Ng
frequency groups, Nx spatial cells
Vectors of each Eddington Tensor component at time tn

fn
αβ ∈ RNx Ng , α, β = x , y , z

Construction of snapshot matrices

Afαβ = [f1
αβ f2

αβ . . . fNt
αβ ] ∈ RNx Ng ×Nt

Define projection operator Gk that will project a given matrix A onto a
rank-k subspace

Afαβ

k = GkAfαβ , k ≤ rank(Afαβ )

Afαβ

k is constructed of k sets of various vectors and factors

Approximation of data from rank k representation

A map Mn is defined by the same method used to define Gk

fn
αβ ≈MnAfαβ

k
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POD of the Eddington Tensor
Centered data matrix

Âfαβ = [̂f1
αβ , . . . , f̂Nt

αβ ] , f̂n
αβ = fn

αβ − f̄αβ , f̄αβ = 1
Nt

Nt∑
n=1

fn
αβ

A thin singular value decomposition (SVD) represents the matrix in the form

Âfαβ = USVT ,

U ∈ RNx Ng ,d holds the left singular vectors {uℓ}d
ℓ=1 in its columns

V ∈ RNt ,d holds the right singular vectors {vℓ}d
ℓ=1 in its columns

S ∈ Rd,d holds the singular values {σℓ}d
ℓ=1 along its diagonal in decreasing order,

d = rank(Âfαβ ) = min(Nx Ng , Nt)

The rank-k POD representation of fαβ

Afαβ

k = f̄αβ ∪ {σℓ, uℓ, vℓ}k
ℓ=1

f̃n
αβ ← f̄αβ +

k∑
ℓ=1

σℓ(vℓ)nuℓ =MnAfαβ

k
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Determination of Rank

For each data matrix A, the rank k must be calculated to store Ak

We consider the rank-k truncated SVD

A ≈ Ak = UkSkVT
k

Uk = [u1 . . . uk ], Sk = diag(σ1, . . . , σk), Vk = [v1 . . . vk ]

The error in Frobenius norm

∥A− Ak∥2
F =

d∑
ℓ=k+1

σ2
ℓ

We calculate k by choosing the relative Frobenius norm error ξ

ξ2 =
∑d

ℓ=k+1 σ2
ℓ∑d

ℓ=1 σ2
ℓ

= ∥A− Ak∥2
F

∥A∥2
F

k increases as ξ decreases
Increasing k increases cost in calculating approximate closures
Accuracy is also expected to increase with k
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Numerical Test Problem

We test this method on a 2D extension of the Fleck-Cummings (F-C) test
Fully-implicit time integration
BTE discretized with simple corner balance scheme
All low-order equations discretized with 2nd order finite volumes
Grid:

20x20 spatial cells, 17 groups, 144 discrete directions
300 time steps ∆t = .02ns for 0 ≤ t ≤ 6ns

Degrees of freedom: 1.175× 109

ROM degrees of freedom: 1.728× 107
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Numerical Results (POD)

Databases are formed from the full-order model solution
Ranks of approximation and memory requirements for the POD with varying ξ

Ranks k vs parameter ξ
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Numerical Results (POD)

Relative errors in the 2-norm using the POD compared to the full-order solution
Errors plotted vs time, each curve corresponds to a value for ξ

Material Temperature Radiation Energy Density
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Convergence of the ROM with Rank (POD)

Relative errors in the 2-norm using the POD compared to the full-order solution
Errors plotted vs ξ, each curve corresponds to an instant of time

Material Temperature Radiation Energy Density
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Discussion

The ROM that approximates the Eddington tensor with the POD performs well

The ROM converges to the full-order solution it was trained on

uniform convergence in time
linear convergence rate vs ξ

We have also shown this methodology capable of reproducing fundamental
radiative transfer physics

Accurate predictions of breakout times of radiation
Accurate predictions of radiation spectrum

Next up: projection of the BTE onto proper orthogonal modes that describe
known radiation intensities
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Model Using Projection onto Proper Orthogonal Modes

POD-Galerkin Projected BTE: L̂[u ]̃I = Q̂[u, T ]
Multigroup QD equations: K[f[̃I]]ζ = q[T ], ζ = PI

Effective grey QD equations: K̄[φ]ζ̄ = q̄[T ], ζ̄ = P̄ζ

Material Energy Balance: RT = Ĥ[ζ̄]

We formulate a POD-Galerkin (POD-G) projection of the BTE

A POD basis is calculated based on base-case solutions of the BTE solution
Intensities are expanded in the POD basis over the whole phase space
The BTE is projected onto the POD basis and solves for coefficients of the
expansion

In this way the POD-G BTE takes the place of the discretized BTE in the
multilevel QD hierarchy

Large gains in computational efficiency since there are far fewer coefficients
than degrees of freedom on the intensities
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Discretization of the BTE

The POD-G projection method is formulated in discrete space
The high-order Boltzmann transport equation

1
c

∂Ig (r, Ω, t)
∂t + Ω ·∇Ig (r, Ω, t) + κg (T )Ig (r, Ω, t) = κg (T )Bg (T )

Discretize with: Discrete-Ordinates, Backward-Euler, Simple Corner Balance

1
c∆tn

(
In − In−1)+ LhIn +Kn

h(T )In = Qn(T ) , (1)

Discrete operators Lh, Kn
h(T ) determined by scheme

Nx spatial degrees of freedom, NΩ discrete directions, Nt time steps,
D = Nx NΩNg

Solution vector: In = ((In
1 )⊤ . . . (In

Ng )⊤)⊤ ∈ RD

Construct snapshot matrix
A = [I1, . . . , INt ] (2)
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POD Basis Formulation

Goal: expand intensities in basis functions {uℓ}r
ℓ=1

Iu
r (tn) =

r∑
ℓ=1

λn
ℓuℓ (3)

We formulate the POD basis {uℓ}r
ℓ=1, r ≪ D using snapshots in A

min
u1,...,ur

Nt∑
n=1

∆tn
∥∥∥∥In −

r∑
ℓ=1

⟨In, uℓ⟩W uℓ

∥∥∥∥2

W
, (4)

Weighted inner product specific to the discretization: ⟨u, v⟩W = u⊤Wv
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The Weighted Inner Product

Standard POD uses the identity matrix W = I so that ⟨u, v⟩W = ⟨u, v⟩
We seek W to correspond to the discrete integration over space, angle, frequency
For the considered discretization schemes we have (in 1D geometry)∫ ∞

0

∫ 1

−1

∫ Lx

0
u(x , µ, ν)dxdµdν ⇒

Ng∑
g=1

NΩ∑
m=1

wm

Nx∑
i=1

∆xi

2 (ug,m,i,L + ug,m,i,R) (5)

We find the matrix W as

W =
Ng⊕

g=1

NΩ⊕
m=1

wmŴ x , Ŵ x =
Nx⊕
i=1

(
∆xi

2 0
0 ∆xi

2

)
(6)
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Calculation of POD Basis

Construct snapshot matrix
A = [I1, . . . , INt ] (7)

Calculate weighted snapshot matrix

Â = W 1/2AD1/2, D = diag(∆t1, . . . , ∆tNt ) (8)

Find singular value decomposition of Â

Â = ÛŜV̂ ⊤ (9)
Û = [û1, . . . , ûd ], Ŝ = diag(σ1, . . . , σd), V̂ = [v̂1, . . . , v̂d ] (10)

The POD basis is then found as U = [u1, . . . , ud ] with d = rank(Â) using

U = W −1/2Û (11)
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POD Galerkin Projection

1
c∆tn

(
In − In−1)+ LhIn +Kn

h(T )In = Qn(T ), Iu
r (tn) =

r∑
ℓ=1

λn
ℓuℓ

POD Galerkin-Projected BTE (apply ⟨uℓ, ·⟩W )

1
c∆tn

(
λn

ℓ − λn−1
ℓ

)
+

r∑
ℓ′=1

λn
ℓ′
〈
uℓ,Lhuℓ′

〉
W

+
r∑

ℓ′=1

λn
ℓ′
〈
uℓ,Kn

h(T )uℓ′
〉

W
=
〈
uℓ, Qn(T )

〉
W

(12)

Used orthogonality of basis:
〈
uℓ′ , uℓ

〉
W

= δℓ,ℓ′

Dense system of equations for {λn
ℓ}
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Numerical Test Problem

Fleck & Cummings, 1971
17 frequency (energy) groups
60 spatial cells, ∆x =0.1 cm
∆t =2×10−2 ns
0 ≤ t ≤ 6 ns, 300 time steps
DS4 Gaussian quadrature set
Finite volume in space & fully implicit scheme for LOQD eqs.
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F-C Test Physical Regimes

The F-C test is characterized by three distinct temporal stages

Rapid wave formation t ∈ [0, 0.3ns]
Propagation of wave from left to right t ∈ (0.3, 1.2ns]
Slow heating of entire domain towards steady state t ∈ (1.2, 6ns]

Finding a POD basis that can represent all three physical regimes is a challenge
Instead, a separate POD basis can be formulated for each regime
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Calculation of Basis

We calculate a unique POD basis for each distinct stage of the F-C test
A1, A2, A3 with di = rank(Ai )

ranks ri ≤ di are calculated
based off singular values of Ai

ξ2 =
∑d

ℓ=k+1 σ2
ℓ∑d

ℓ=1 σ2
ℓ

Stage 1 (r1): full rank = 15
Stage 2 (r2): full rank = 45
Stage 3 (r3): full rank = 240 1 0 - 5 1 0 - 6 1 0 - 7 1 0 - 8 1 0 - 9 1 0 - 1 0 1 0 - 1 1 1 0 - 1 2 1 0 - 1 3 1 0 - 1 4 1 0 - 1 5 1 0 - 1 6

0
3 0
6 0
9 0

1 2 0
1 5 0
1 8 0
2 1 0
2 4 0

Ra
nk

 of
 Ex

pa
ns

ion
 (r)

ε

 r 1
 r 2
 r 3

J. M. Coale (NCSU) Los Alamos National Laboratory Janurary 4, 2022 26 / 31



Numerical Results

Relative errors in 2-norm at each instant of time
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Numerical Results

Relative errors in 2-norm plotted vs ξ for certain times
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Conclusion

Prototype advanced ROMs for TRT have been developed and tested in 1D and 2D
geometries
All models require data on the BTE solution
Multiphysical equations of interest are coupled moment equations on a
low-dimensional scale
Use of the low-order moment equations enforces conservation of fundamental
physics in radiative transfer component
The proposed methods have been shown to perform well on highly nonlinear
thermal radiative transfer problems

Future research items
Optimal sampling techniques for generation of data to inform and train
ROMs for TRT
Investiagion of more complex data-driven methods for approximation
Parametrized ROMs for TRT
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