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Introduction

Radiative transfer is the physical process of energy transfer via the propagation,
emission and absorption of photon radiation in the host medium

Radiative transfer becomes the dominant mode of energy redistribution in
materials at extreme temperatures, and is an essential piece of physics for many
phenomena spanning several fields

plasma physics
high-energy density physics
astrophysics
atmospheric science

These phenomena are described by complex multiphysical systems of differential
equations (radiation hydrodynamics)
The particle transport physics is modeled by the Boltzmann transport equation
(BTE)
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Challenges in Simulation of Particle Transport Problems

The numerical simulation of mutiphysical particle transport problems faces several
challenges

High-dimensionality
Strong nonlinearity
Strong coupling of equations

Material opacities depend on state of matter
The state of matter is influenced by particle fluxes

Multi-scale characterization
Distinct characteristic behavior in different energy ranges
System of equations of different types
Integro-differential BTE

The BTE is especially challenging to solve

Hyperbolic differential operator
The solution at any point depends on the solution everywhere in phase space
due to the integral operator
The solution is high-dimensional
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Model Order Reduction for the BTE

The BTE largely influences the dimensionality of these problems

3D geometry → 7 independent variables
Reduced order models (ROMs) for the BTE are commonly employed to reduce the
cost of multiphysics simulations involving radiative transfer

Some ROMs have seen widespread adoption for their usefulness and simplicity

Diffusion-based models like flux limited diffusion (FLD)
P1, P1/3, P3
Minerbo models

However, the accuracy of these models is limited

The development of advanced ROMs for the BTE that can achieve both
computational efficiency and high accuracy is an active field of research

In recent times the bulk of this research effort has been focused on
data-driven ROMs
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Data-Driven Model Order Reduction for the BTE

The most advanced methods for data-driven model order reduction were developed
with fluid dynamics in mind
More recently these methods have been the subject of a substantial research effort
for developing ROMs for Boltzmann transport
The majority of these ROMs focus on linear particle transport problems

Many questions remain for nonlinear problems of high energy density physics
(radiation hydrodynamics problems)

How to preserve and reproduce essential features of fundamental physics
Dealing with multiscale behavior
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Fundamental Approach

Nonlinear projective approach

interpretation
nonlinear method of moments
multigrid approach

Known to give advantage in multiphysical, multiscale applications

The BTE is coupled with a hierarchy of low-order moment equations

Each moment system is exactly closed through nonlinear functionals of the
BTE solution (e.g. the Eddington tensor)
Moment equations are conservation equations for integral (low-dimensional)
quantities
Moment equations account for different scales of the problem
Multiphysics equations are coupled to moment equations on the same
dimensional scale

Data-driven methods of approximation to estimate closures for low-order equations

proper orthogonal decomposition (POD)
dynamic mode decomposition (DMD)
Fundamental radiation physics conserved through moment equations
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Nonlinear Thermal Radiative Transfer Problem
Prototypes of these ROMs are designed for the fundamental
thermal radiative transfer (TRT) problem

Supersonic radiation flow problem neglecting material motion, photon
scattering, heat conduction and external sources

The high-order multigroup Boltzmann transport equation (BTE)

1
c
∂Ig (r,Ω, t)

∂t + Ω ·∇Ig (r,Ω, t) + κg (T )Ig (r,Ω, t) = κg (T )Bg (T )

r ∈ G , for all ΩΩΩ, g = 1, . . . ,Ng , t ≥ t0,

Ig |r∈∂G = I in
g , ΩΩΩ · eeen < 0, t ≥ t0,

Ig |t=t0 = I0
g , r ∈ G , for all ΩΩΩ,

r - spatial position, ΩΩΩ - direction of particle motion, g - photon frequency
group, t - time, Ig (r,Ω, t) - specific intensity of photons in the group g

The material energy balance (MEB) equation

∂ε(T )
∂t =

Ng∑
g=1

∫
4π
κg (T )

(
Ig (r,Ω, t)− Bg (T )

)
dΩ , T |t=t0 =T 0(r), for r∈G .
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Multigroup Quasidiffusion (VEF) Equations

1
c
∂Ig
∂t + Ω ·∇Ig + κg (T )Ig = κg (T )Bg (T )

Angular moments of intensities

Eg ((r), t) = 1
c

∫
4π Ig dΩ

Fg ((r), t) =
∫

4π ΩIg dΩ

Projection:
∫

4π ·dΩ
∫

4π Ω · dΩ

∂Eg

∂t + ∇ · Fg + cκg (T )Eg = 4πκg (T )Bg (T ) , (1)

1
c
∂Fg

∂t + c∇ ·
(
fg [I]Eg

)
+ κg (T )Fg = 0 (2)

Exact closure through the Eddington tensor

fg [I] =
∫

4π Ω⊗ΩIg dΩ∫
4π Ig dΩ

(3)
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Effective Grey Quasidiffusion (VEF) Equations
∂Eg

∂t + ∇ · Fg + cκg (T )Eg = 4πκg (T )Bg (T ),

1
c
∂Fg

∂t + c∇ ·
(
fg [I]Eg

)
+ κg (T )Fg = 0

Frequency-integrated angular moments of intensities
E =

∑Ng
g=1 Eg , F =

∑Ng
g=1 Fg

Projection:
∑Ng

g=1 ·
∂E
∂t + ∇ · F + cκ̄E E = cκ̄BaRT 4 (4)

1
c
∂F
∂t + c∇ · (̄fE) + K̄RF + η̄E = 0 (5)

Exact closure through frequency-averaged grey factors

κ̄E =
∑Ng

g=1 κg Eg∑Ng
g=1 Eg

, κ̄B =
∑Ng

g=1 κg Bg∑Ng
g=1 Bg

, κ̄R,α =
∑Ng

g=1 κg |Fα,g |∑Ng
g=1 |Fα,g |

, (6)

KR = diag(κ̄R,x , κ̄R,y , κ̄R,z ), f̄ =
∑Ng

g=1 fg Eg∑Ng
g=1 Eg

, η̄ =
∑Ng

g=1(κg − K̄R)Fg∑Ng
g=1 Eg

. (7)
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Multilevel Quasidiffusion Method
High-order Boltzmann transport equation for Ig

1
c
∂Ig
∂t + Ω ·∇Ig + κg (T )Ig = κg (T )Bg (T )

Eddington tensor Ig ⇒ fg [I] =
∫

4π
Ω⊗ΩIg dΩ∫
4π

Ig dΩ

Multigroup quasidiffusion equations for Eg , Fg

∂Eg

∂t + ∇ · Fg + cκg (T )Eg = 4πκg (T )Bg (T ),

1
c
∂Fg

∂t + c∇ ·
(
fg [I]Eg

)
+ κg (T )Fg = 0

Grey closures Eg , Fg ⇒ κ̄E , κ̄B , f̄, K̄R , η̄

Effective grey problem for E , F , T
∂E
∂t + ∇ · F + cκ̄E E = cκ̄BaRT 4

1
c
∂F
∂t + c∇ · (̄fE) + K̄RF + η̄E = 0

∂ε(T )
∂t = c

(
κ̄E E − κ̄BaRT 4)

κ̄E =
∑Ng

g=1 κg Eg∑Ng
g=1 Eg

κ̄B =
∑Ng

g=1 κg Bg∑Ng
g=1 Bg

κ̄R,α =
∑Ng

g=1 κg |Fα,g |∑Ng
g=1 |Fα,g |

KR = diag(κ̄R,x , κ̄R,y , κ̄R,z )

f̄ =
∑Ng

g=1 fg Eg∑Ng
g=1 Eg

η̄ =
∑Ng

g=1(κg − K̄R)Fg∑Ng
g=1 Eg
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Reduced-Order Model for TRT

Data-driven approximator
f̃g = G[f∗], f∗ known

Multigroup quasidiffusion equations for Eg , Fg

∂Eg

∂t + ∇ · Fg + cκg (T )Eg = 4πκg (T )Bg (T ),

1
c
∂Fg

∂t + c∇ ·
(
f̃g Eg

)
+ κg (T )Fg = 0

Grey closures Eg , Fg ⇒ κ̄E , κ̄B , f̄, K̄R , η̄

Effective grey problem for E , F , T
∂E
∂t + ∇ · F + cκ̄E E = cκ̄BaRT 4

1
c
∂F
∂t + c∇ · (̄fE) + K̄RF + η̄E = 0

∂ε(T )
∂t = c

(
κ̄E E − κ̄BaRT 4)

κ̄E =
∑Ng

g=1 κg Eg∑Ng
g=1 Eg

κ̄B =
∑Ng

g=1 κg Bg∑Ng
g=1 Bg

κ̄R,α =
∑Ng

g=1 κg |Fα,g |∑Ng
g=1 |Fα,g |

KR = diag(κ̄R,x , κ̄R,y , κ̄R,z )

f̄ =
∑Ng

g=1 fg Eg∑Ng
g=1 Eg

η̄ =
∑Ng

g=1(κg − K̄R)Fg∑Ng
g=1 Eg
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Approximation of Eddington Tensor

Projection, compression of data

Given: full-order solution to some TRT problem for Nt time steps, Ng
frequency groups, Nr spatial cells
Vectors of each Eddington Tensor component at time tn

fn
αβ ∈ RNr Ng , α, β = x , y , z

Construction of snapshot matrices

Afαβ = [f1
αβ f2

αβ . . . fNt
αβ ] ∈ RNr Ng×Nt

Define projection operator Gk that will project a given matrix A onto a
rank-k subspace

Afαβ
k = GkAfαβ , k ≤ rank(Afαβ )

Afαβ
k is constructed of k sets of various vectors and factors

Approximation of data from rank k representation

A mapMn is defined by the same method used to define Gk

fn
αβ ≈MnAfαβ

k
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POD of the Eddington Tensor
Centered data matrix

Âfαβ = [̂f1
αβ , . . . , f̂Nt

αβ ] , f̂n
αβ = fn

αβ − f̄αβ , f̄αβ = 1
Nt

Nt∑
n=1

fn
αβ

A thin singular value decomposition (SVD) represents the matrix in the form

Âfαβ = USVT ,

U ∈ RNr Ng ,d holds the left singular vectors {u`}d
`=1 in its columns

V ∈ RNt ,d holds the right singular vectors {v`}d
`=1 in its columns

S ∈ Rd,d holds the singular values {σ`}d
`=1 along its diagonal in decreasing order,

d = rank(Âfαβ ) = min(Nr Ng ,Nt)

The rank-k POD representation of fαβ

Afαβ
k = f̄αβ ∪ {σ`, u`, v`}k

`=1

f̃n
αβ ← f̄αβ +

k∑
`=1

σ`(v`)nu` =MnAfαβ
k
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DMD of the Eddington Tensor
The DMD constructs the best-fit linear operator B to the
time-dependent data {fn

αβ}Nt
n=1, generating the dynamic system:

d f̃αβ(t)
dt = Bf̃αβ(t), ⇒ f̃αβ(t) =

k∑
`=1

β`ϕ`eω`t ,

ω`,ϕ` are the eigenvalues and associated eigenfunctions of B
Form two data matrices for tn = tn−1 + ∆t with constant time step

Xαβ = [f1
αβ , . . . , fNt−1

αβ ] , X̂αβ = [f2
αβ , . . . , fNt

αβ ] fn
αβ ∈ RNr Ng

B̃ = X̂X+ is the closest approximation to B in the Frobenius norm.
Here + signifies the Moore-Penrose pseudo inverse.
The DMD representation

Afαβ
k = {β̃`, ω̃`, ϕ̃`}k

`=1, f̃αβ(tn) =
k∑
`=1

β̃`ϕ̃`eω̃`tn
, ω̃` = ∆t−1 ln(γ`) ,

where γ`, ϕ̃` are the eigenvalues and associated eigenfunctions of B̃

Equilibrium-subtracted DMD (DMD-E)
Construction of the linear operator B that fits the equilibrium-subtracted data
The time-dependent TRT problem tends to steady-state as t →∞.
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Determination of Rank

For each data matrix A, the rank k must be calculated to store Ak

We consider the rank-k truncated SVD

A ≈ Ak = UkSkVT
k

Uk = [u1 . . . uk ], Sk = diag(σ1, . . . , σk ), Vk = [v1 . . . vk ]

The error in Frobenius norm

‖A− Ak‖2
F =

d∑
`=k+1

σ2
`

We calculate k by choosing the relative Frobenius norm error ξrel

ξ2
rel =

∑d
`=k+1 σ

2
`∑d

`=1 σ
2
`

= ‖A− Ak‖2
F

‖A‖2
F

k increases as ξrel decreases
Increasing k increases cost in calculating approximate closures
Accuracy is also expected to increase with k
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Analysis or ROM Accuracy

We do not have theory to predict how the models will perform

Numerical testing is used to demonstrate the following

The models converge to the reference solution as k → d
How the ROM errors converge as k → d
How well the low-rank ROMs capture fundamental physics in the solution
compared to the full-order TRT model on a given phase-space and time
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Numerical Test Problem

We test this method on a 2D extension of the Fleck-Cummings (F-C) test
Fully-implicit time integration
BTE discretized with simple corner balance scheme
All low-order equations discretized with 2nd order finite volumes
Grid:

20x20 spatial cells, 17 groups, 144 discrete directions
300 time steps ∆t = .02ns for 0 ≤ t ≤ 6ns

Degrees of freedom: 1.175× 109

ROM degrees of freedom: 1.728× 107
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Numerical Results (POD)

Databases are formed from the full-order model solution
Ranks of approximation and memory requirements for the POD with varying ξrel

I : Nx Ny NΩNg × Nt = 1.18× 109

Afxx,c : Nx Ny Ng × Nt = 2.04× 106

Afxx,c
k : k(1 + Nt) + (k + 1)Nx Ny Ng

ξrel = 10−2 → k = 15 : 1.13× 105

ξrel = 10−4 → k = 34 : 2.48× 105

Ranks k vs parameter ξrel
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Numerical Results (POD)

Relative errors in the 2-norm using the POD compared to the full-order solution
Errors plotted vs time, each curve corresponds to a value for ξrel

0 1 2 3 4 5 6
Time (ns)

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||T
FO

M
T R

O
M

|| 2
||T

FO
M

|| 2

rel = 10 2

rel = 10 4

rel = 10 6

rel = 10 8

rel = 10 10

rel = 10 12

rel = 10 14

rel = 10 16

Material Temperature

0 1 2 3 4 5 6
Time (ns)

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||E
FO

M
E R

O
M

|| 2
||E

FO
M

|| 2

rel = 10 2

rel = 10 4

rel = 10 6

rel = 10 8

rel = 10 10

rel = 10 12

rel = 10 14

rel = 10 16

Radiation Energy Density

J. M. Coale (NCSU) Los Alamos National Laboratory October 27, 2021 20 / 32



Numerical Results (DMD)

Relative errors in the 2-norm using the DMD compared to the full-order solution
Errors plotted vs time, each curve corresponds to a value for ξrel
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Numerical Results (DMD-E)

Relative errors in the 2-norm using the DMD-E compared to the full-order solution
Errors plotted vs time, each curve corresponds to a value for ξrel
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Convergence of the ROM with Rank (POD)

Relative errors in the 2-norm using the POD compared to the full-order solution
Errors plotted vs ξrel, each curve corresponds to an instant of time
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Convergence of the ROM with Rank (DMD)

Relative errors in the 2-norm using the DMD compared to the full-order solution
Errors plotted vs ξrel, each curve corresponds to an instant of time
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Convergence of the ROM with Rank (DMD-E)

Relative errors in the 2-norm using the DMD-E compared to the full-order solution
Errors plotted vs ξrel, each curve corresponds to an instant of time
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Conservation of Physics: Breakout Time

To demonstrate how the low-rank ROMs conserve fundamental physics in the TRT
solution, we consider breakout time
Breakout time is an important measurement in high-temperature laser-driven
radiation shock experiments
For the F-C test we can calculate how well the ROMs capture certain quantities on
the right boundary as time elapses

Total radiation energy density (ĒR ) and material temperature (T̄R ) averaged over
the right boundary of the spatial domain vs time

T̄R = 1
LR

∫ LR

0
T (xR , y) dy , ĒR = 1

LR

∫ LR

0
E(xR , y) dy

We also consider the spectrum of radiation present at the right boundary

ĒR,g = 1
LR

∫ LR

0
Eg (xR , y) dy
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Breakout Time: FOM

Total radiation energy density (ĒR ) and material temperature (T̄R ) averaged over
the right boundary of the spatial domain vs time

T̄R = 1
LR

∫ LR

0
T (xR , y) dy , ĒR = 1

LR

∫ LR

0
E(xR , y) dy
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Breakout Time: Relative Error for the ROMs

ξrel = 10−4

T̄R = 1
LR

∫ LR

0
T (xR , y) dy , ĒR = 1

LR

∫ LR

0
E(xR , y) dy
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Breakout Time: Relative Error for the DDET ROMs
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Conclusion
Main elements of the developed methodology

nonlinear projection of the BTE and formulation of a hierarchy of low-order
moment equations
data-driven techniques to approximate closures

All models require data on the BTE solution
The proposed methods have been shown to perform well on highly nonlinear
thermal radiative transfer problems
Any multiphysical equations of interest can be coupled with the effective grey QD
equations
Use of the low-order moment equations enforces conservation of fundamental
physics in radiative transfer component
The proposed approach for development of ROMs can be applied to a wide class
of multiphysical high-energy density problems, such as radiative hydrodynamics
problems.
Future research items

Optimal sampling techniques for generation of data to inform and train
ROMs for TRT
Investiagion of more complex data-driven methods for approximation
Parametrized ROMs for TRT
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