A Reduced-Order Model for Thermal Radiative Transfer Problems Based on Multilevel Quasidiffusion Method

Joseph Coale and Dmitriy Y. Anistratov
Department of Nuclear Engineering North Carolina State University

M\&C
August 26, 2019

Outline

(1) Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM
(4) Conclusions

Outline

(1) Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM

4) Conclusions

Introduction

- Thermal radiative transfer (TRT) is an essential piece in many multi-physical phenomena whose fields of application include astrophysics and inertial confinement fusion
- The TRT problem encompasses the fundamental features of radiative hydrodynamic problems
- High dimensionality
- Multiple scales in time and space
- Strong nonlinearity \& coupling of equations
- Equations of different types
- Distinct characteristic behavior for various energy ranges
- The TRT problem creates a valuable test platform for new computational methods before being extended to more complicated physical models

Thermal Radiative Transfer (TRT) Problem

- The radiative transfer (RT) equation

$$
\frac{1}{c} \frac{\partial I_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)}{\partial t}+\boldsymbol{\Omega} \cdot \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)+\varkappa_{g}(T) \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)=\varkappa_{g}(T) B_{g}(T)
$$

$$
\begin{gathered}
\mathbf{r} \in G, \quad \text { for all } \boldsymbol{\Omega}, \quad g=1, \ldots, N_{g}, \quad t \geq t_{0} \\
\left.I_{g}\right|_{r \in \partial G}=I_{g}^{i n}, \boldsymbol{\Omega} \cdot \mathbf{e}_{n}<0, \quad t \geq t_{0} \\
\left.I_{g}\right|_{t=t_{0}}=l_{g}^{0}, \quad \mathbf{r} \in G, \quad \text { for all } \boldsymbol{\Omega} \\
B_{g}(T)=\frac{2 h}{c^{2}} \int_{\nu_{g}}^{\nu_{g+1}} \nu^{3}\left(e^{\frac{h \nu}{k T}}-1\right)^{-1} d \nu
\end{gathered}
$$

- The material energy balance (MEB) equation gives a basic model of photon interaction with matter

$$
\begin{aligned}
\frac{\partial \varepsilon(T)}{\partial t} & =\sum_{g=1}^{N_{g}} \int_{4 \pi} \varkappa_{g}(T)\left(I_{g}-B_{g}(T)\right) d \Omega \\
\left.T\right|_{t=t_{0}} & =T^{0}(\mathbf{r}), \quad \mathbf{r} \in G, \quad g=1, \ldots, N_{g}
\end{aligned}
$$

Reduced-Order Modeling

- The high dimensionality of the radiative transport equation motivates the formulation of reduced-order models
- To reduce dimensionality and create a basis for reduced-order models in multiphysics problems involving radiative transfer, it is proposed to formulate a hierarchy of effective low-order transport (ELOT) problems
- These ELOT problems can be coupled to other multiphysics equations in a projected space of the lowest dimensionality of the system
- We define ELOT equations for the angular and energy moments of the specific intensity by means of the multilevel nonlinear projective-iterative (MNPI) technique using the Quasidiffusion (QD) method
- The proper orthogonal decomposition of the high-order solution and its moments is used to complete the reduction of dimensionality

Outline

(1) Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM

4) Conclusions

Multigroup Low-Order QD (MLOQD) Equations

$$
\frac{1}{c} \frac{\partial I_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)}{\partial t}+\boldsymbol{\Omega} \cdot \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)+\varkappa_{g}(T) I_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)=\varkappa_{g}(T) B_{g}(T)
$$

- Projection: $\int_{4 \pi} \cdot d \boldsymbol{\Omega} \& \int_{4 \pi} \cdot \boldsymbol{\Omega} d \boldsymbol{\Omega}$
- Functions in the projected space: $E_{g}=\frac{1}{c} \int_{4 \pi} I_{g} d \Omega$ \& $F_{g}=\int_{4 \pi} \Omega I_{g} d \Omega$
$\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g} E_{g}=4 \pi \varkappa_{g} B_{g}$,

$$
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot \boldsymbol{H}_{g}+\varkappa_{g} \boldsymbol{F}_{g}=0
$$

- The closure is defined by means of the QD (Eddington) tensor as follows:

$$
H_{g}=\int_{4 \pi} \boldsymbol{\Omega} \boldsymbol{\Omega} \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t) d \boldsymbol{\Omega}=\boldsymbol{f}_{g} E_{g}, \quad \boldsymbol{f}_{g}=\frac{\int_{4 \pi} \boldsymbol{\Omega} \boldsymbol{\Omega} \operatorname{Ig}_{g} d \boldsymbol{\Omega}}{\int_{4 \pi} \lg _{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t) d \boldsymbol{\Omega}}
$$

Multigroup Low-Order QD (MLOQD) Equations

$$
\frac{1}{c} \frac{\partial I_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)}{\partial t}+\boldsymbol{\Omega} \cdot \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)+\varkappa_{g}(T) \operatorname{Ig}_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)=\varkappa_{g}(T) B_{g}(T)
$$

- Projection: $\int_{4 \pi} \cdot d \boldsymbol{\Omega} \& \int_{4 \pi} \cdot \boldsymbol{\Omega} d \boldsymbol{\Omega}$
- Functions in the projected space: $E_{g}=\frac{1}{c} \int_{4 \pi} I_{g} d \boldsymbol{\Omega}$ \& $F_{g}=\int_{4 \pi} \Omega I_{g} d \Omega$

$$
\begin{array}{ll}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g} E_{g}=4 \pi \varkappa_{g} B_{g}, & \frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g} E_{g}=4 \pi \varkappa_{g} B_{g} \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot \boldsymbol{H}_{g}+\varkappa_{g} \boldsymbol{F}_{g}=0, & \frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(f_{g} E_{g}\right)+\varkappa_{g} \boldsymbol{F}_{g}=0
\end{array}
$$

- The closure is defined by means of the QD (Eddington) tensor as follows:

$$
H_{g}=\int_{4 \pi} \boldsymbol{\Omega} \boldsymbol{\Omega} I_{g}(r, \boldsymbol{\Omega}, t) d \boldsymbol{\Omega}=\boldsymbol{f}_{g} E_{g}, \quad f_{g}=\frac{\int_{4 \pi} \boldsymbol{\Omega} \boldsymbol{\Omega} I_{g} d \boldsymbol{\Omega}}{\int_{4 \pi} \lg _{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t) d \boldsymbol{\Omega}}
$$

Grey Low-Order QD (GLOQD) Equations

$$
\begin{array}{r}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\boldsymbol{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0
\end{array}
$$

- Projection: $\sum_{g=1}^{N_{g}} \cdot \quad\left(\int_{0}^{\infty} \cdot d \nu\right)$
- Functions in the projected space: $\bar{E}=\sum_{g=1}^{N_{g}} E_{g} \quad \& \quad \overline{\boldsymbol{F}}=\sum_{g=1}^{N_{g}} \boldsymbol{F}_{g}$

$$
\begin{gathered}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \sum_{g=1}^{N_{g}} \varkappa_{g} E_{g}=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot \sum_{g=1}^{N_{g}} f_{g} E_{g}+\sum_{g=1}^{N_{g}} \varkappa_{g} \boldsymbol{F}_{g}=0 \\
\frac{\partial \varepsilon(T)}{\partial t}=c \sum_{g=1}^{N_{g}} \varkappa_{g} E_{g}-c \bar{\varkappa}_{B} a_{R} T^{4}
\end{gathered}
$$

Grey Low-Order QD (GLOQD) Equations

$$
\begin{array}{r}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\boldsymbol{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0
\end{array}
$$

- Projection: $\sum_{g=1}^{N_{g}} \cdot \quad\left(\int_{0}^{\infty} \cdot d \nu\right)$
- Functions in the projected space: $\bar{E}=\sum_{g=1}^{N_{g}} E_{g} \quad \& \quad \overline{\boldsymbol{F}}=\sum_{g=1}^{N_{g}} \boldsymbol{F}_{g}$

$$
\begin{array}{ll}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \sum_{g=1}^{N_{g}} \varkappa_{g} E_{g}=c \bar{\varkappa}_{B} a_{R} T^{4}, & \frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot \sum_{g=1}^{N_{g}} f_{g} E_{g}+\sum_{g=1}^{N_{g}} \varkappa_{g} \boldsymbol{F}_{g}=0, & \frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot(\overline{\boldsymbol{f}} \bar{E})+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0 \\
\frac{\partial \varepsilon(T)}{\partial t}=c \sum_{g=1}^{N_{g}} \varkappa_{g} E_{g}-c \bar{\varkappa}_{B} a_{R} T^{4}, & \frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4}
\end{array}
$$

Outline

© Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM

4 Conclusions

Exact TRT Model: Multilevel System of QD Equations

- The high-order RT equation

$$
\begin{gathered}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\boldsymbol{\Omega} \cdot I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) \\
\Downarrow \\
\begin{array}{|cc|}
\hline & C_{e_{n}, g}
\end{array}
\end{gathered}
$$

- The multigroup LOQD equations

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\boldsymbol{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 \\
\Downarrow \\
\begin{array}{|ccccc}
\overline{\mathfrak{f}} & \bar{C}_{e_{n}} & \bar{\varkappa}_{E} & \bar{\varkappa}_{\text {ros }} & \boldsymbol{\eta}
\end{array}
\end{gathered}
$$

- The grey LOQD equations coupled with the MEB equation

$$
\begin{gathered}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot(\overline{\boldsymbol{f}} \bar{E})+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0
\end{gathered}
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4}
$$

ROM: P_{1} Approximation

- High-order solution approximated as linear in $\boldsymbol{\Omega}$

$$
\begin{gathered}
I_{g}=a+\boldsymbol{b} \cdot \Omega \\
\Downarrow \\
\mathbf{f}_{g}=\frac{1}{3} \mathbb{I} \quad C_{e_{n}, g}=\frac{1}{2}
\end{gathered}
$$

- The multigroup LOQD equations

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\frac{1}{3} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 \\
\Downarrow \\
\overline{\mathfrak{f}}=\frac{1}{3} \mathbb{I} \quad \bar{C}_{e_{n}}=\frac{1}{2} \quad \bar{\varkappa}_{E} \quad \bar{\varkappa}_{\text {ros }} \quad \boldsymbol{\eta}
\end{gathered}
$$

- The grey LOQD equations coupled with the MEB equation

$$
\begin{array}{ll}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} & \frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot\left(\frac{1}{3} \bar{E}\right)+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0 &
\end{array}
$$

ROM: $P_{1 / 3}$ Approximation

- High-order solution approximated as linear in $\boldsymbol{\Omega}$

$$
\begin{gathered}
I_{g}=a+\boldsymbol{b} \cdot \Omega \\
\Downarrow \\
\mathbf{f}_{g}=\frac{1}{3} \mathbb{I} \quad C_{e_{n}, g}=\frac{1}{2}
\end{gathered}
$$

- The multigroup LOQD equations with weighted $\frac{\partial \boldsymbol{F}_{g}}{\partial t}$

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{3 c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\frac{1}{3} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 \\
\Downarrow \\
\overline{\mathfrak{f}}=\frac{1}{3} \mathbb{I} \quad \bar{C}_{e_{n}}=\frac{1}{2} \quad \bar{\varkappa}_{E} \quad \bar{\varkappa}_{\text {ros }} \quad \boldsymbol{\eta}
\end{gathered}
$$

- The grey LOQD equations coupled with the MEB equation

$$
\begin{array}{cc}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} & \frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{3 c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot\left(\frac{1}{3} \bar{E}\right)+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0 &
\end{array}
$$

ROM: Diffusion Approximation

- High-order solution approximated as linear in $\boldsymbol{\Omega}$

$$
\begin{gathered}
I_{g}=a+\boldsymbol{b} \cdot \Omega \\
\Downarrow \\
\mathbf{f}_{g}=\frac{1}{3} \mathbb{I} \quad C_{e_{n}, g}=\frac{1}{2}
\end{gathered}
$$

- The multigroup LOQD equations with $\frac{\partial F_{g}}{\partial t}=0$

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
c \nabla \cdot\left(\frac{1}{3} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 \\
\Downarrow \\
\overline{\mathfrak{f}}=\frac{1}{3} \mathbb{I} \quad \bar{C}_{e_{n}}=\frac{1}{2} \quad \bar{\varkappa}_{E} \quad \bar{\varkappa}_{\text {ros }} \\
\boldsymbol{\eta}
\end{gathered}
$$

- The grey LOQD equations coupled with the MEB equation

$$
\begin{array}{cl}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} & \frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4} \\
c \nabla \cdot\left(\frac{1}{3} \bar{E}\right)+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0 &
\end{array}
$$

Outline

©
Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM

4 Conclusions

The Proper Orthogonal Decomposition (POD)

- Cast a problem solution into matrix form $\mathbf{A} \in \mathbb{R}^{m, n}$
- The $n^{\text {th }}$ column holds the spatial vector of solutions for the $n^{\text {th }}$ instant of time
- $\operatorname{rank}(\mathbf{A})=k=\min (m, n)$
- A singular value decomposition (SVD) represents the matrix in the form

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}
$$

- $\mathbf{U} \in \mathbb{R}^{m, k}$ holds the left singular vectors in its columns
- $\mathbf{V} \in \mathbb{R}^{n, k}$ holds the right singular vectors in its columns
- $\boldsymbol{\Sigma} \in \mathbb{R}^{k, k}$ holds the k singular values (σ) along its diagonal in descending order
- A can be approximated as a matrix of rank $r<k$ by reducing the dimension $k \rightarrow r$ in its SVD (using the first r singular values).

$$
\begin{gathered}
\tilde{\mathbf{A}}^{r}=\mathbf{U}^{r} \boldsymbol{\Sigma}^{r}\left(\mathbf{V}^{r}\right)^{T} \\
\boldsymbol{\Sigma}^{r} \in \mathbb{R}^{r, r}, \quad \mathbf{U}^{r} \in \mathbb{R}^{m, r}, \quad \mathbf{V}^{r} \in \mathbb{R}^{n, r}
\end{gathered}
$$

Applying the POD to Group QD Factors

We derive a parameterized ROM for TRT problems by applying the POD to the group QD factors

- Given the high order solution to some TRT system defined with the set of parameters $\mathcal{L}^{(1)}$

$$
I_{g}^{(1)}, \quad \mathcal{L}^{(1)}=\left\{\left.I_{g}^{(1)}\right|_{r \in \partial G}=I_{g}^{(1) \text { in }}, \Delta t^{(1)}, \ldots\right\}
$$

- The QD factors $I_{g}^{(1)} \rightarrow \boldsymbol{f}_{g}^{(1)}$ are cast in SVD form

$$
\boldsymbol{f}_{g}^{(1)}=\mathbf{U}_{g}^{(1)} \boldsymbol{\Sigma}_{g}^{(1)} \mathbf{V}_{g}^{T(1)}
$$

- A set of reduced rank QD factors $\tilde{\boldsymbol{f}}_{g}^{(1)}$ are found from the SVD
- A new problem can be defined with parameters $\mathcal{L}^{(2)}$ and solved with $\tilde{\boldsymbol{f}}_{g}^{(1)}$ to avoid using the RT equation

Multigroup LOQD ROM: Multilevel LOQD Eqs. with POD

- Compressed representation of the high-order solution as POD expanded group QD factors

$$
\begin{gathered}
\Downarrow \\
\begin{array}{cc}
\tilde{\boldsymbol{f}}_{g} & C_{e_{n}, g} \\
\hline
\end{array}
\end{gathered}
$$

- The multigroup LOQD equations

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\tilde{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 \\
\Downarrow \\
\begin{array}{|ccccc}
\overline{\mathfrak{f}} & \bar{C}_{e_{n}} & \bar{\varkappa}_{E} & \bar{\varkappa}_{\text {ros }} & \boldsymbol{\eta}
\end{array}
\end{gathered}
$$

- The grey LOQD equations coupled with the MEB equation

$$
\begin{gathered}
\frac{\partial \bar{E}}{\partial t}+\nabla \cdot \overline{\boldsymbol{F}}+c \bar{\varkappa}_{E} \bar{E}=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial \overline{\boldsymbol{F}}}{\partial t}+c \nabla \cdot(\overline{\boldsymbol{f}} \bar{E})+\bar{\varkappa}_{R} \overline{\boldsymbol{F}}+\bar{\eta} \bar{E}=0
\end{gathered}
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=c \bar{\varkappa}_{E} \bar{E}-c \bar{\varkappa}_{B} a_{R} T^{4}
$$

Outline

(1) Introduction

- Overview
- The Multilevel Quasidiffusion Method
(2) Reduced Order Modeling
- Classical Reduced Order Models
- The Proper Orthogonal Decomposition
(3) Results
- Solutions of the Multigroup LOQD ROM

4 Conclusions

1D F-C Test Problem

$$
\begin{array}{cc}
\substack{\left.I_{v}\right|_{x=0}=B_{v}\left(T_{b}\right) \\
\longrightarrow} & \begin{array}{c}
\\
\kappa_{v}=\frac{27}{v^{3}}\left(1-e^{-\frac{v}{T}}\right) \\
\varepsilon(T)=c_{v} T
\end{array} \\
\begin{array}{cc}
\\
T_{b}=1 \mathrm{KeV}
\end{array} & \text { Vacuum } \\
\left.I_{v}\right|_{t=0}=B_{v}\left(T_{0}\right) \quad T_{0}=10^{-3} \mathrm{KeV} & \mathrm{x}=6
\end{array}
$$

- Fleck \& Cummings, 1971
- 17 frequency (energy) groups
- 60 spatial cells, $\Delta x=0.1 \mathrm{~cm}$
- $\Delta t=2 \times 10^{-2} \mathrm{~ns}$
- $0 \leq t \leq 6 \mathrm{~ns}, 300$ time steps
- $D S_{4}$ Gaussian quadrature set
- Finite volume in space \& fully implicit scheme for LOQD eqs.

QD Factor Analysis

Singular values ($\sigma_{i, g} / \sigma_{1, g}$)
Low-rank approximation in energy groups depending on ε_{σ}

$\varepsilon_{\sigma} \backslash g$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
10^{-1}	1	1	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
10^{-2}	1	8	6	5	5	4	3	3	3	3	3	3	3	4	4	4	4
10^{-3}	1	18	14	11	10	7	7	7	7	7	7	8	8	8	8	9	9
10^{-4}	2	19	21	17	16	14	12	11	11	12	12	12	13	13	14	14	14
10^{-12}	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62

Solution of the Multigroup ROM

- The F-C test ($\Delta t=2 \times 10^{-2} \mathrm{~ns}$) is solved for the high-order solution and formed into reduced-rank QD factors $\tilde{\boldsymbol{f}}_{g}$
- The same test is solved with the multigroup LOQD ROM using $\tilde{\boldsymbol{f}}_{g}$
- Shown is the Relative error in the ∞-norm of solutions of the multigroup LOQD ROM computed for different ε_{σ} values.

Temperature

Energy density

Multigroup LOQD ROM vs Multigroup Diffusion, P_{1}, and $P_{1 / 3}$

- The F-C test ($\Delta t=2 \times 10^{-2} \mathrm{~ns}$) is also solved with classical ROMs such as multigroup diffusion, P_{1}, and $P_{1 / 3}$
- Shown is the Relative error in the ∞-norm of solutions of these ROMs compared to the multigroup LOQD ROM

Temperature

Energy density

Incomplete QD Factor Database: Coarse Time Steps

- The group QD factor database generated for $\Delta t=2 \times 10^{-2} \mathrm{~ns}$ is used with the multigroup LOQD ROM to solve the F-C test with $\Delta t=1 \times 10^{-2} \mathrm{~ns}$
- Incomplete portions of the database are calculated using linear interpolation between known values in the database
- Shown is the Relative error in the L_{1}-norm of the multigroup LOQD ROM

Temperature

Energy density

Incomplete QD Factor Database: Parameterization

- QD factor databases were formed for $T_{i}^{(1)} n=1 \mathrm{KeV}$ and $T_{i}^{(2)} n=0.92$ KeV
- The multigroup LOQD ROM linearly interpolates between these databases to solve the F-C test with $T_{i} n=0.96 \mathrm{KeV}$
- Shown is the Relative error in the L_{1}-norm of the multigroup LOQD ROM

Temperature

Energy density

Conclusions

Results

- In this study we developed a novel general methodology for developing reduced-order models for TRT problems.
- The multigroup LOQD ROM sufficiently accurately approximates the solution of the considered TRT problem.
- The multigroup LOQD ROM was shown to have potential in parametric model reduction for TRT problems

Future Work

- Currently a grey (single-group) LOQD ROM is being developed for the same TRT problems
- Future study of the multigroup LOQD ROM includes
- Refining how the QD factor database is decomposed and compressed
- Extending the ROM into 2-D
- Extending the ROM for radiation hydrodynamic problems

