Introduction

Reduced Order Modeling

Results 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Reduced-Order Model for Thermal Radiative Transfer Problems Based on Multilevel Quasidiffusion Method

Joseph Coale and Dmitriy Y. Anistratov

Department of Nuclear Engineering North Carolina State University

> M&C August 26, 2019

Outling			
Introduction	Reduced Order Modeling	Results	Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

นเททธ

- Overview
- The Multilevel Quasidiffusion Method

2 Reduced Order Modeling

- Classical Reduced Order Models
- The Proper Orthogonal Decomposition

3 Results

Solutions of the Multigroup LOQD ROM

Introduction	Reduced Order Modeling	Results	Conclusions
•••••			
Outline			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

Overview

• The Multilevel Quasidiffusion Method

Reduced Order Modeling

Classical Reduced Order Models
 The Preper Orthography Decemprosity

• The Proper Orthogonal Decomposition

Results

Solutions of the Multigroup LOQD ROM

Introduction	Reduced Order Modeling	Results	Conclusions
000000		0000000	O
Introduction			

- Thermal radiative transfer (TRT) is an essential piece in many multi-physical phenomena whose fields of application include astrophysics and inertial confinement fusion
- The TRT problem encompasses the fundamental features of radiative hydrodynamic problems
 - High dimensionality
 - Multiple scales in time and space
 - Strong nonlinearity & coupling of equations
 - Equations of different types
 - Distinct characteristic behavior for various energy ranges
- The TRT problem creates a valuable test platform for new computational methods before being extended to more complicated physical models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Introduction
 Reduced Order Modeling
 Results
 Conclusions

 OO0000
 OO0000
 OO0000
 O
 O

• The radiative transfer (RT) equation

$$\frac{1}{c} \frac{\partial I_{g}(\mathbf{r}, \Omega, t)}{\partial t} + \Omega \cdot I_{g}(\mathbf{r}, \Omega, t) + \varkappa_{g}(T) I_{g}(\mathbf{r}, \Omega, t) = \varkappa_{g}(T) B_{g}(T)$$

$$\mathbf{r} \in G, \text{ for all } \Omega, \quad g = 1, \dots, N_{g}, \quad t \ge t_{0}$$

$$I_{g}|_{r \in \partial G} = I_{g}^{in}, \quad \Omega \cdot \mathbf{e}_{n} < 0, \quad t \ge t_{0}$$

$$I_{g}|_{t=t_{0}} = I_{g}^{0}, \quad \mathbf{r} \in G, \text{ for all } \Omega$$

$$B_{g}(T) = \frac{2h}{c^{2}} \int_{\nu_{g}}^{\nu_{g+1}} \nu^{3} \left(e^{\frac{h\nu}{kT}} - 1\right)^{-1} d\nu$$

• The material energy balance (MEB) equation gives a basic model of photon interaction with matter

$$\frac{\partial \varepsilon(T)}{\partial t} = \sum_{g=1}^{N_g} \int_{4\pi} \varkappa_g(T) \left(I_g - B_g(T) \right) d\Omega$$
$$T|_{t=t_0} = T^0(\mathbf{r}), \quad \mathbf{r} \in G, \quad g = 1, \dots, N_g$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Reduced Order Modeling	Results	Conclusions
000●000		0000000	O
Reduced-Order	Modeling		

- The **high dimensionality** of the radiative transport equation motivates the formulation of **reduced-order models**
- To reduce dimensionality and create a basis for reduced-order models in multiphysics problems involving radiative transfer, it is proposed to formulate a hierarchy of effective low-order transport (ELOT) problems
- These **ELOT problems** can be coupled to other multiphysics equations in a projected space of the **lowest dimensionality** of the system
- We define **ELOT equations** for the angular and energy moments of the specific intensity by means of the **multilevel nonlinear projective-iterative** (MNPI) technique using the Quasidiffusion (QD) method
- The proper orthogonal decomposition of the high-order solution and its moments is used to complete the reduction of dimensionality

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	Reduced Order Modeling	Results 0000000	Conclusions O
Outline			

Overview

The Multilevel Quasidiffusion Method

2 Reduced Order Modeling

• Classical Reduced Order Models

• The Proper Orthogonal Decomposition

Results

Solutions of the Multigroup LOQD ROM

Conclusions

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Multigroup Low	-Order QD ((MLOQD)	Equations	
Introduction 0000000	Reduced Order Modeling		Results 0000000	Conclusions 0

$$\frac{1}{c}\frac{\partial I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)}{\partial t}+\boldsymbol{\Omega}\cdot I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)+\varkappa_{g}\left(\boldsymbol{T}\right)I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)=\varkappa_{g}\left(\boldsymbol{T}\right)B_{g}\left(\boldsymbol{T}\right)$$

- Projection: $\int_{4\pi} \cdot d\Omega \& \int_{4\pi} \cdot \Omega d\Omega$
- Functions in the projected space: $E_g = \frac{1}{c} \int_{4\pi} I_g d\Omega$ & $F_g = \int_{4\pi} \Omega I_g d\Omega$

$$\frac{\partial E_g}{\partial t} + \nabla \cdot \mathbf{F}_g + c \varkappa_g E_g = 4\pi \varkappa_g B_g, \qquad \frac{\partial E_g}{\partial t} + \nabla \cdot \mathbf{F}_g + c \varkappa_g E_g = 4\pi \varkappa_g B_g$$

$$\frac{1}{c} \frac{\partial \mathbf{F}_g}{\partial t} + c \nabla \cdot \mathbf{H}_g + \varkappa_g \mathbf{F}_g = 0, \qquad \frac{1}{c} \frac{\partial \mathbf{F}_g}{\partial t} + c \nabla \cdot (\mathbf{f}_g E_g) + \varkappa_g \mathbf{F}_g = 0$$

• The closure is defined by means of the QD (Eddington) tensor as follows:

$$\boldsymbol{H}_{g} = \int_{4\pi} \Omega \Omega \boldsymbol{I}_{g} \left(\boldsymbol{r}, \Omega, t \right) d\Omega = \boldsymbol{f}_{g} \boldsymbol{E}_{g}, \quad \boldsymbol{f}_{g} = \frac{\int_{4\pi} \Omega \Omega \boldsymbol{I}_{g} d\Omega}{\int_{4\pi} \boldsymbol{I}_{g} \left(\boldsymbol{r}, \Omega, t \right) d\Omega}$$

			0000000	O
Multigroup Low	-Order QD (MLOQD)	Equations	

$$\frac{1}{c}\frac{\partial I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)}{\partial t}+\boldsymbol{\Omega}\cdot I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)+\varkappa_{g}\left(\boldsymbol{T}\right)I_{g}\left(\boldsymbol{r},\boldsymbol{\Omega},t\right)=\varkappa_{g}\left(\boldsymbol{T}\right)B_{g}\left(\boldsymbol{T}\right)$$

- Projection: $\int_{4\pi} \cdot d\Omega \& \int_{4\pi} \cdot \Omega d\Omega$
- Functions in the projected space: $E_g = \frac{1}{c} \int_{4\pi} I_g d\Omega$ & $F_g = \int_{4\pi} \Omega I_g d\Omega$

$$\frac{\partial E_g}{\partial t} + \nabla \cdot \mathbf{F}_g + c \varkappa_g E_g = 4\pi \varkappa_g B_g, \qquad \frac{\partial E_g}{\partial t} + \nabla \cdot \mathbf{F}_g + c \varkappa_g E_g = 4\pi \varkappa_g B_g$$

$$\frac{1}{c} \frac{\partial \mathbf{F}_g}{\partial t} + c \nabla \cdot \mathbf{H}_g + \varkappa_g \mathbf{F}_g = 0, \qquad \frac{1}{c} \frac{\partial \mathbf{F}_g}{\partial t} + c \nabla \cdot (\mathbf{f}_g E_g) + \varkappa_g \mathbf{F}_g = 0$$

• The closure is defined by means of the QD (Eddington) tensor as follows:

$$\boldsymbol{H}_{g} = \int_{4\pi} \Omega \Omega \boldsymbol{I}_{g} \left(\boldsymbol{r}, \Omega, t \right) d\Omega = \boldsymbol{f}_{g} \boldsymbol{E}_{g}, \quad \boldsymbol{f}_{g} = \frac{\int_{4\pi} \Omega \Omega \boldsymbol{I}_{g} d\Omega}{\int_{4\pi} \boldsymbol{I}_{g} \left(\boldsymbol{r}, \Omega, t \right) d\Omega}$$

Grey Low-Order QD (GLOQD) Equations

Reduced Order Modeling

$$\frac{\partial E_{g}}{\partial t} + \nabla \cdot \mathbf{F}_{g} + c \varkappa_{g} (T) E_{g} = 4\pi \varkappa_{g} (T) B_{g} (T)$$
$$\frac{1}{c} \frac{\partial \mathbf{F}_{g}}{\partial t} + c \nabla \cdot (\mathbf{f}_{g} E_{g}) + \varkappa_{g} (T) \mathbf{F}_{g} = 0$$

• Projection: $\sum_{g=1}^{N_g} \cdot \left(\int_0^\infty \cdot d\nu \right)$

• Functions in the projected space: $\bar{E} = \sum_{g=1}^{N_g} E_g$ & $\bar{F} = \sum_{g=1}^{N_g} F_g$

$$\frac{\partial \bar{\boldsymbol{E}}}{\partial t} + \nabla \cdot \bar{\boldsymbol{F}} + c \sum_{g=1}^{N_g} \varkappa_g \boldsymbol{E}_g = c \bar{\varkappa}_B \boldsymbol{a}_R T^4,$$

Introduction

$$\frac{1}{c}\frac{\partial \bar{\boldsymbol{F}}}{\partial t} + c\nabla \cdot \sum_{g=1}^{N_g} \boldsymbol{f}_g \boldsymbol{E}_g + \sum_{g=1}^{N_g} \boldsymbol{\varkappa}_g \boldsymbol{F}_g = 0,$$

$$\frac{\partial \varepsilon(T)}{\partial t} = c \sum_{g=1}^{N_g} \varkappa_g E_g - c \bar{\varkappa}_{Ba_R} T^4,$$

 $\frac{\partial \bar{E}}{\partial t} + \nabla \cdot \bar{F} + c \bar{\varkappa}_E \bar{E} = c \bar{\varkappa}_B a_R T^4$

Results

 $\frac{1}{c}\frac{\partial \bar{F}}{\partial t} + c\nabla \cdot \left(\bar{f}\bar{E}\right) + \bar{\varkappa}_{R}\bar{F} + \bar{\eta}\bar{E} = 0$

$$\frac{\partial \varepsilon(T)}{\partial t} = c \bar{\varkappa}_E \bar{E} - c \bar{\varkappa}_B a_R T^4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reduced Order Modeling 0000000 Grey Low-Order QD (GLOQD) Equations

$$\frac{\partial E_g}{\partial t} + \nabla \cdot \mathbf{F}_g + c \varkappa_g (T) E_g = 4\pi \varkappa_g (T) B_g (T)$$
$$\frac{1}{c} \frac{\partial \mathbf{F}_g}{\partial t} + c \nabla \cdot (\mathbf{f}_g E_g) + \varkappa_g (T) \mathbf{F}_g = 0$$

• Projection: $\sum_{\sigma=1}^{N_g} \cdot \left(\int_0^\infty \cdot d\nu \right)$

• Functions in the projected space: $\bar{E} = \sum_{\sigma=1}^{N_g} E_g$ & $\bar{F} = \sum_{\sigma=1}^{N_g} F_g$

$$\frac{\partial \bar{E}}{\partial t} + \nabla \cdot \bar{F} + c \sum_{g=1}^{N_g} \varkappa_g E_g = c \bar{\varkappa}_B a_R T^4,$$

Introduction

$$\frac{1}{c}\frac{\partial \bar{F}}{\partial t} + c\nabla \cdot \sum_{g=1}^{N_g} f_g E_g + \sum_{g=1}^{N_g} \varkappa_g F_g = 0,$$

$$\frac{\partial \varepsilon(T)}{\partial t} = c \sum_{g=1}^{N_g} \varkappa_g E_g - c \bar{\varkappa}_B a_R T^4,$$

$$\frac{\partial \bar{E}}{\partial t} + \nabla \cdot \bar{F} + c \bar{\varkappa}_E \bar{E} = c \bar{\varkappa}_B a_R T^4$$

$$\frac{1}{c}\frac{\partial \bar{F}}{\partial t} + c\nabla \cdot \left(\bar{f}\bar{E}\right) + \bar{\varkappa}_{R}\bar{F} + \bar{\eta}\bar{E} = 0$$

$$\frac{\partial \varepsilon(T)}{\partial t} = c \bar{\varkappa}_{E} \bar{E} - c \bar{\varkappa}_{B} a_{R} T^{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Reduced Order Modeling	Results	Conclusions
0000000	●00000	0000000	O
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- Overview
- The Multilevel Quasidiffusion Method

2

Reduced Order Modeling • Classical Reduced Order Models

• The Proper Orthogonal Decomposition

3 Results

• Solutions of the Multigroup LOQD ROM

 Introduction
 Reduced Order Modeling
 Results
 Conclusions

 •••••••
 ••••••
 •••••
 •••••

 Exact TRT Model: Multilevel System of QD Equations

• The high-order RT equation

$$\frac{1}{c}\frac{\partial I_{g}}{\partial t} + \Omega \cdot I_{g} + \varkappa_{g}(T)I_{g} = \varkappa_{g}(T)B_{g}(T)$$

$$\downarrow$$

$$\mathbf{f}_{g} \quad C_{e_{n},g}$$

• The multigroup LOQD equations

_

$$\frac{\partial E}{\partial t} + \nabla \cdot \bar{F} + c \bar{\varkappa}_E \bar{E} = c \bar{\varkappa}_B a_R T^4 \qquad \qquad \frac{\partial \varepsilon (T)}{\partial t} = c \bar{\varkappa}_E \bar{E} - c \bar{\varkappa}_B a_R T^4
\frac{1}{c} \frac{\partial \bar{F}}{\partial t} + c \nabla \cdot (\bar{F}\bar{E}) + \bar{\varkappa}_R \bar{F} + \bar{\eta} \bar{E} = 0$$

0000000		0000000	O
ROM: P_1 A	oproximation		

 ${\ensuremath{\, \bullet }}$ High-order solution approximated as linear in Ω

$$\begin{split} I_g &= a + \boldsymbol{b} \cdot \boldsymbol{\Omega} \\ & \downarrow \\ \mathbf{f}_g &= \frac{1}{3} \mathbb{I} \quad C_{e_n,g} = \frac{1}{2} \end{split}$$

• The multigroup LOQD equations

Introduction	Reduced Order Modeling	Results	Conclusions
0000000	○●○○○○	0000000	O
ROM. P.	Approximation		

• High-order solution approximated as linear in Ω

1/3

$$\begin{aligned} I_g &= \mathbf{a} + \mathbf{b} \cdot \mathbf{\Omega} \\ & \downarrow \\ \mathbf{f}_g &= \frac{1}{3} \mathbb{I} \quad C_{e_n,g} = \frac{1}{2} \end{aligned}$$

 $\mathbf{f}_{g} = \frac{1}{3}\mathbb{I} \quad C_{e_{n},g} = \frac{1}{2}$ • The multigroup LOQD equations with weighted $\frac{\partial F_{g}}{\partial t}$

ROM: Diffusion	Approximation		
Introduction	Reduced Order Modeling	Results	Conclusions
0000000		0000000	0

• High-order solution approximated as linear in Ω

$$l_{g} = a + b \cdot \Omega$$

$$\downarrow$$

$$f_{g} = \frac{1}{3}\mathbb{I} \quad C_{e_{n},g} = \frac{1}{2}$$

• The multigroup LOQD equations with $\frac{\partial F_g}{\partial t} = 0$

 $\bullet\,$ The grey LOQD equations coupled with the MEB equation

$$\frac{\partial \bar{E}}{\partial t} + \nabla \cdot \bar{F} + c \bar{\varkappa}_E \bar{E} = c \bar{\varkappa}_B a_R T^4$$
$$c \nabla \cdot \left(\frac{1}{3} \bar{E}\right) + \bar{\varkappa}_R \bar{F} + \bar{\eta} \bar{E} = 0$$

$$\frac{\partial \varepsilon(T)}{\partial t} = c \bar{\varkappa}_E \bar{E} - c \bar{\varkappa}_B a_R T^4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Reduced Order Modeling	Results	Conclusions
0000000		0000000	0
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- Overview
- The Multilevel Quasidiffusion Method

2 Reduced Order Modeling

- Classical Reduced Order Models
- The Proper Orthogonal Decomposition

3 Results

• Solutions of the Multigroup LOQD ROM

Introduction	Reduced Order Modeling	Results	Conclusions
0000000	○○○●○○	0000000	O
The Proper	Orthogonal Decompo	osition (POD)	

- Cast a problem solution into matrix form $\mathbf{A} \in \mathbb{R}^{m,n}$
 - The *n*th column holds the spatial vector of solutions for the *n*th instant of time
 - $rank(\mathbf{A}) = k = min(m, n)$
- A singular value decomposition (SVD) represents the matrix in the form

 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \,,$

- $\mathbf{U} \in \mathbb{R}^{m,k}$ holds the left singular vectors in its columns
- $\mathbf{V} \in \mathbb{R}^{n,k}$ holds the right singular vectors in its columns
- $\Sigma \in \mathbb{R}^{k,k}$ holds the k singular values (σ) along its diagonal in descending order
- A can be approximated as a matrix of rank r < k by reducing the dimension k → r in its SVD (using the first r singular values).

$$\begin{split} \tilde{\mathsf{A}}^{r} &= \mathsf{U}^{r} \boldsymbol{\Sigma}^{r} \left(\mathsf{V}^{r} \right)^{T}, \\ \boldsymbol{\Sigma}^{r} &\in \mathbb{R}^{r, r}, \quad \mathsf{U}^{r} \in \mathbb{R}^{m, r}, \quad \mathsf{V}^{r} \in \mathbb{R}^{n, r}. \end{split}$$

Introduction	Reduced Order Modeling	Results	Conclusions
0000000	○○○○●○	0000000	O
Applying the	POD to Group QD	Factors	

We derive a parameterized ROM for TRT problems by applying the POD to the group QD factors

 $\bullet\,$ Given the high order solution to some TRT system defined with the set of parameters $\mathcal{L}^{(1)}$

$$I_g^{(1)}, \quad \mathcal{L}^{(1)} = \left\{ I_g^{(1)}|_{r\in\partial G} = I_g^{(1)\mathsf{in}}, \Delta t^{(1)}, \dots
ight\}$$

 $\bullet~$ The QD factors $\mathit{I_g^{(1)}} \rightarrow \mathit{f_g^{(1)}}$ are cast in SVD form

$$oldsymbol{f}_{g}^{(1)} = oldsymbol{\mathsf{U}}_{g}^{(1)} oldsymbol{\Sigma}_{g}^{(1)} oldsymbol{\mathsf{V}}_{g}^{\mathcal{T}(1)}$$

- A set of reduced rank QD factors $\tilde{f}_{g}^{(1)}$ are found from the SVD
- A new problem can be defined with parameters $\mathcal{L}^{(2)}$ and solved with $\tilde{f}_g^{(1)}$ to avoid using the RT equation

Introduction	Reduced Order Modeling	Results	Conclusions		
0000000	○○○○○●	0000000	O		
Multigroup		Itilevel I OOD Eas	with POD		

• Compressed representation of the high-order solution as POD expanded group QD factors $$\Downarrow$$

 $C_{e_n,g}$

 \tilde{f}_{g}

Introduction	Reduced Order Modeling	Results	Conclusions
		•000000	
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- Overview
- The Multilevel Quasidiffusion Method

2 Reduced Order Modeling

- Classical Reduced Order Models
- The Proper Orthogonal Decomposition

Results
 Solutions of the Multigroup LOQD ROM

Introduction	Reduced Order Modeling	Results	Conclusions		
		000000			
	st Droblom				

1D F-C Test Problem

- Fleck & Cummings, 1971
- 17 frequency (energy) groups
- 60 spatial cells, $\Delta x = 0.1$ cm
- $\Delta t = 2 \times 10^{-2}$ ns
- $0 \le t \le 6$ ns, 300 time steps
- DS₄ Gaussian quadrature set
- Finite volume in space & fully implicit scheme for LOQD eqs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Low-rank approximation in energy groups depending on ε_{σ}

60 70

1E-12 -

0

20 30 40 50

Singular values $(\sigma_{i,g}/\sigma_{1,g})$

Singular Value Index

$\varepsilon_{\sigma} \setminus g$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
10^-1	1	1	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
10 ⁻²	1	8	6	5	5	4	3	3	3	3	3	3	3	4	4	4	4
10 ⁻³	1	18	14	11	10	7	7	7	7	7	7	8	8	8	8	9	9
10 ⁻⁴	2	19	21	17	16	14	12	11	11	12	12	12	13	13	14	14	14
10 ⁻¹²	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

- The F-C test ($\Delta t = 2 \times 10^{-2}$ ns) is solved for the high-order solution and formed into reduced-rank QD factors \tilde{f}_g
- The same test is solved with the multigroup LOQD ROM using $ilde{f}_g$
- Shown is the Relative error in the ∞ -norm of solutions of the multigroup LOQD ROM computed for different ε_{σ} values.

- The F-C test ($\Delta t = 2 \times 10^{-2}$ ns) is also solved with classical ROMs such as multigroup diffusion, P_1 , and $P_{1/3}$
- $\bullet\,$ Shown is the Relative error in the $\infty\text{-norm}$ of solutions of these ROMs compared to the multigroup LOQD ROM

- The group QD factor database generated for $\Delta t = 2 \times 10^{-2}$ ns is used with the multigroup LOQD ROM to solve the F-C test with $\Delta t = 1 \times 10^{-2}$ ns
- Incomplete portions of the database are calculated using linear interpolation between known values in the database
- Shown is the Relative error in the L_1 -norm of the multigroup LOQD ROM

- QD factor databases were formed for $T_i^{(1)}n = 1$ KeV and $T_i^{(2)}n = 0.92$ KeV
- The multigroup LOQD ROM linearly interpolates between these databases to solve the F-C test with $T_i n = 0.96$ KeV
- Shown is the Relative error in the *L*₁-norm of the multigroup LOQD ROM

Introduction	Reduced Order Modeling	Results	Conclusions
0000000		0000000	•
Conclusions			

Results

- In this study we developed a novel general methodology for developing reduced-order models for TRT problems.
- The multigroup LOQD ROM sufficiently accurately approximates the solution of the considered TRT problem.
- The multigroup LOQD ROM was shown to have potential in parametric model reduction for TRT problems

Future Work

- Currently a grey (single-group) LOQD ROM is being developed for the same TRT problems
- Future study of the multigroup LOQD ROM includes
 - Refining how the QD factor database is decomposed and compressed
 - Extending the ROM into 2-D
 - Extending the ROM for radiation hydrodynamic problems

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ