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Introduction

Thermal radiative transfer (TRT) is an essential piece in many
multi-physical phenomena whose fields of application include astrophysics
and inertial confinement fusion

The TRT problem encompasses the fundamental features of radiative
hydrodynamic problems

High dimensionality
Multiple scales in time and space
Strong nonlinearity & coupling of equations
Equations of different types
Distinct characteristic behavior for various energy ranges

The TRT problem creates a valuable test platform for new computational
methods before being extended to more complicated physical models
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Thermal Radiative Transfer (TRT) Problem

The radiative transfer (RT) equation

1
c
∂Ig (r ,Ω, t)

∂t + Ω · Ig (r ,Ω, t) + κg (T ) Ig (r ,Ω, t) = κg (T ) Bg (T )

r ∈ G , for all Ω, g = 1, . . . ,Ng , t ≥ t0

Ig |r∈∂G = I in
g , Ω · en < 0, t ≥ t0

Ig |t=t0 = I0
g , r ∈ G , for all Ω

Bg (T ) = 2h
c2

∫ νg+1

νg

ν3
(

e
hν
kT − 1

)−1
dν

The material energy balance (MEB) equation gives a basic model of
photon interaction with matter

∂ε (T )
∂t =

Ng∑
g=1

∫
4π

κg (T ) (Ig − Bg (T )) dΩ

T |t=t0 = T 0 (r) , r ∈ G , g = 1, . . . ,Ng
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Reduced-Order Modeling

The high dimensionality of the radiative transport equation motivates
the formulation of reduced-order models
To reduce dimensionality and create a basis for reduced-order models
in multiphysics problems involving radiative transfer, it is proposed to
formulate a hierarchy of effective low-order transport (ELOT) problems
These ELOT problems can be coupled to other multiphysics equations in
a projected space of the lowest dimensionality of the system
We define ELOT equations for the angular and energy moments of the
specific intensity by means of the multilevel nonlinear
projective-iterative (MNPI) technique using the Quasidiffusion (QD)
method
The proper orthogonal decomposition of the high-order solution and its
moments is used to complete the reduction of dimensionality
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Multigroup Low-Order QD (MLOQD) Equations

1
c
∂Ig (r ,Ω, t)

∂t + Ω · Ig (r ,Ω, t) + κg (T ) Ig (r ,Ω, t) = κg (T ) Bg (T )

Projection:
∫

4π · dΩ &
∫

4π · ΩdΩ

Functions in the projected space: Eg = 1
c

∫
4π Ig dΩ & Fg =

∫
4π ΩIg dΩ

∂Eg

∂t +∇ · Fg + cκg Eg = 4πκg Bg ,

1
c
∂Fg

∂t + c∇ ·Hg + κg Fg = 0,

∂Eg

∂t +∇ · Fg + cκg Eg = 4πκg Bg

1
c
∂Fg

∂t + c∇ · (fg Eg ) + κg Fg = 0

The closure is defined by means of the QD (Eddington) tensor as follows:

Hg =
∫

4π
ΩΩIg (r ,Ω, t) dΩ = fg Eg , fg =

∫
4π ΩΩIg dΩ∫

4π Ig (r ,Ω, t) dΩ



Introduction Reduced Order Modeling Results Conclusions

Multigroup Low-Order QD (MLOQD) Equations
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Grey Low-Order QD (GLOQD) Equations

∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

1
c
∂Fg

∂t + c∇ · (fg Eg ) + κg (T ) Fg = 0

Projection:
∑Ng

g=1 ·
(∫∞

0 · dν
)

Functions in the projected space: Ē =
∑Ng

g=1 Eg & F̄ =
∑Ng

g=1 Fg

∂Ē
∂t +∇ · F̄ + c

Ng∑
g=1

κg Eg = cκ̄BaRT 4,

1
c
∂F̄
∂t + c∇ ·

Ng∑
g=1

fg Eg +
Ng∑

g=1

κg Fg = 0,

∂ε (T )
∂t = c

Ng∑
g=1

κg Eg − cκ̄BaRT 4,

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

1
c
∂F̄
∂t + c∇ ·

(
f̄ Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4



Introduction Reduced Order Modeling Results Conclusions
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∂Ē
∂t +∇ · F̄ + c

Ng∑
g=1

κg Eg = cκ̄BaRT 4,

1
c
∂F̄
∂t + c∇ ·

Ng∑
g=1

fg Eg +
Ng∑

g=1

κg Fg = 0,

∂ε (T )
∂t = c

Ng∑
g=1

κg Eg − cκ̄BaRT 4,

∂Ē
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Exact TRT Model: Multilevel System of QD Equations
The high-order RT equation

1
c
∂Ig
∂t + Ω · Ig + κg (T ) Ig = κg (T ) Bg (T )

⇓
fg Cen,g

The multigroup LOQD equations

∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

1
c
∂Fg

∂t + c∇ · (fg Eg ) + κg (T ) Fg = 0

⇓
f̄ C̄en κ̄E κ̄ros η

The grey LOQD equations coupled with the MEB equation

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

1
c
∂F̄
∂t + c∇ ·

(
f̄ Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4
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ROM: P1 Approximation
High-order solution approximated as linear in Ω

Ig = a + b ·Ω
⇓

fg = 1
3 I Cen,g = 1

2
The multigroup LOQD equations

∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

1
c
∂Fg

∂t + c∇ ·
(1
3Eg

)
+ κg (T ) Fg = 0

⇓

f̄ = 1
3 I C̄en = 1

2 κ̄E κ̄ros η

The grey LOQD equations coupled with the MEB equation

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

1
c
∂F̄
∂t + c∇ ·

(1
3 Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4
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ROM: P1/3 Approximation
High-order solution approximated as linear in Ω

Ig = a + b ·Ω
⇓

fg = 1
3 I Cen,g = 1

2
The multigroup LOQD equations with weighted ∂Fg

∂t

∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

1
3c
∂Fg

∂t + c∇ ·
(1
3Eg

)
+ κg (T ) Fg = 0

⇓

f̄ = 1
3 I C̄en = 1

2 κ̄E κ̄ros η

The grey LOQD equations coupled with the MEB equation

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

1
3c
∂F̄
∂t + c∇ ·

(1
3 Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4
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ROM: Diffusion Approximation
High-order solution approximated as linear in Ω

Ig = a + b ·Ω
⇓

fg = 1
3 I Cen,g = 1

2
The multigroup LOQD equations with ∂Fg

∂t = 0
∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

c∇ ·
(1
3Eg

)
+ κg (T ) Fg = 0

⇓

f̄ = 1
3 I C̄en = 1

2 κ̄E κ̄ros η

The grey LOQD equations coupled with the MEB equation

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

c∇ ·
(1
3 Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4
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The Proper Orthogonal Decomposition (POD)

Cast a problem solution into matrix form A ∈ Rm,n

The nth column holds the spatial vector of solutions for the nth

instant of time
rank(A) = k = min(m, n)

A singular value decomposition (SVD) represents the matrix in the form

A = UΣVT ,

U ∈ Rm,k holds the left singular vectors in its columns
V ∈ Rn,k holds the right singular vectors in its columns
Σ ∈ Rk,k holds the k singular values (σ) along its diagonal in
descending order

A can be approximated as a matrix of rank r < k by reducing the
dimension k → r in its SVD (using the first r singular values).

Ãr = Ur Σr(Vr)T
,

Σr ∈ Rr,r , Ur ∈ Rm,r , Vr ∈ Rn,r .
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Applying the POD to Group QD Factors

We derive a parameterized ROM for TRT problems by applying the POD to
the group QD factors

Given the high order solution to some TRT system defined with the set of
parameters L(1)

I(1)
g , L(1) =

{
I(1)
g |r∈∂G = I(1)in

g ,∆t(1), . . .
}

The QD factors I(1)
g → f (1)

g are cast in SVD form

f (1)
g = U(1)

g Σ(1)
g VT (1)

g

A set of reduced rank QD factors f̃ (1)
g are found from the SVD

A new problem can be defined with parameters L(2) and solved with f̃ (1)
g

to avoid using the RT equation
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Multigroup LOQD ROM: Multilevel LOQD Eqs. with POD

Compressed representation of the high-order solution as POD expanded
group QD factors

⇓

f̃g Cen,g

The multigroup LOQD equations

∂Eg

∂t +∇ · Fg + cκg (T ) Eg = 4πκg (T ) Bg (T )

1
c
∂Fg

∂t + c∇ ·
(
f̃g Eg

)
+ κg (T ) Fg = 0

⇓

f̄ C̄en κ̄E κ̄ros η

The grey LOQD equations coupled with the MEB equation

∂Ē
∂t +∇ · F̄ + cκ̄E Ē = cκ̄BaRT 4

1
c
∂F̄
∂t + c∇ ·

(
f̄ Ē
)

+ κ̄R F̄ + η̄Ē = 0

∂ε (T )
∂t = cκ̄E Ē − cκ̄BaRT 4
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1D F-C Test Problem

Fleck & Cummings, 1971
17 frequency (energy) groups
60 spatial cells, ∆x =0.1 cm
∆t =2×10−2 ns
0 ≤ t ≤ 6 ns, 300 time steps
DS4 Gaussian quadrature set
Finite volume in space & fully implicit scheme for LOQD eqs.
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QD Factor Analysis

Singular values (σi,g/σ1,g)

A ∈ Rm,n , m = 62, n = 300

σn,g

σ1,g
≥ εσ for all n ≤ rg

Low-rank approximation in energy groups depending on εσ

εσ\ g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10−1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
10−2 1 8 6 5 5 4 3 3 3 3 3 3 3 4 4 4 4
10−3 1 18 14 11 10 7 7 7 7 7 7 8 8 8 8 9 9
10−4 2 19 21 17 16 14 12 11 11 12 12 12 13 13 14 14 14
10−12 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
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Solution of the Multigroup ROM

The F-C test (∆t = 2× 10−2 ns) is solved for the high-order solution and
formed into reduced-rank QD factors f̃g

The same test is solved with the multigroup LOQD ROM using f̃g

Shown is the Relative error in the ∞-norm of solutions of the multigroup
LOQD ROM computed for different εσ values.

Temperature Energy density



Introduction Reduced Order Modeling Results Conclusions

Multigroup LOQD ROM vs Multigroup Diffusion, P1, and
P1/3

The F-C test (∆t = 2× 10−2 ns) is also solved with classical ROMs such
as multigroup diffusion, P1, and P1/3

Shown is the Relative error in the ∞-norm of solutions of these ROMs
compared to the multigroup LOQD ROM

Temperature Energy density
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Incomplete QD Factor Database: Coarse Time Steps

The group QD factor database generated for ∆t = 2× 10−2 ns is used
with the multigroup LOQD ROM to solve the F-C test with
∆t = 1× 10−2 ns
Incomplete portions of the database are calculated using linear
interpolation between known values in the database
Shown is the Relative error in the L1-norm of the multigroup LOQD ROM

Temperature Energy density



Introduction Reduced Order Modeling Results Conclusions

Incomplete QD Factor Database: Parameterization

QD factor databases were formed for T (1)
i n = 1 KeV and T (2)

i n = 0.92
KeV
The multigroup LOQD ROM linearly interpolates between these
databases to solve the F-C test with Ti n = 0.96 KeV
Shown is the Relative error in the L1-norm of the multigroup LOQD ROM

Temperature Energy density
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Conclusions

Results
In this study we developed a novel general methodology for developing
reduced-order models for TRT problems.
The multigroup LOQD ROM sufficiently accurately approximates the
solution of the considered TRT problem.
The multigroup LOQD ROM was shown to have potential in parametric
model reduction for TRT problems

Future Work
Currently a grey (single-group) LOQD ROM is being developed for the
same TRT problems

Future study of the multigroup LOQD ROM includes

Refining how the QD factor database is decomposed and
compressed
Extending the ROM into 2-D
Extending the ROM for radiation hydrodynamic problems
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