Reduced-Order Models for Thermal Radiative Transfer Based on POD-Galerkin Method and Low-Order Quasidiffusion Equations

Joseph M. Coale and Dmitriy Y. Anistratov
Department of Nuclear Engineering North Carolina State University

Modeling and Simulations in High Energy-Density Physics and Plasma Physics M\&C 2021

Radiation Transport

NC STATE UNIVERSITY

- We consider problems of high-energy density physics, where radiative transfer is the main mechanism of energy redistribution
- Described by complex systems of multiphyiscal differential equations
- Numerical simulations of these complex multiphysical problems are faced with several challenges
- Strong nonlinearity
- Multi-scale characterization
- High-dimensionality
- The Boltzmann transport equation (BTE) drives the dimensionality
- The solution is 7-dimensional
- Independent variables include: time (t), spatial position (\boldsymbol{r}), direction of motion (Ω), frequency (ν) describing photons
- Simple discretization - 100 nodes each axis: 10^{12} degrees of freedom
- The high dimensionality imposes large computational burden and memory footprint
- Reduced order models for the BTE are commonly employed to reduce the problem of dimensionality

Model Order Reduction for the BTE

NC STATE UNIVERSITY

- We develop a reduced-order model (ROM) for the BTE to reduce the dimensionality of multiphysical simulations
- Reducing both computational cost and memory requirements
- Basic idea of the model:
- Formulate a proper orthogonal decomposition - Galerkin (POD-G) projection for the BTE using known solution data
- The photon intensities are expanded about the POD basis
- The projected form of the BTE solves for the coefficients of this expansion for photon intensities
- Equip the low-dimensional projected BTE with a system of low-order moment equations of the BTE
- The POD-G BTE serves to calculate closures for the moment equations, which are coupled to the specific multiphysics equations of interest

Thermal Radiative Transfer

NC STATE UNIVERSITY

- The first prototype of this method is formulated on the multigroup thermal radiative transfer (TRT) problem in 1D slab geometry
- The high-order Boltzmann transport equation

$$
\begin{gather*}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}(x, \mu, t)+\mu \frac{\partial I_{g}}{\partial x}(x, \mu, t)+\varkappa_{g}(T) I_{g}(x, \mu, t)=2 \pi \varkappa_{g}(T) B_{g}(T) \tag{1}\\
x \in[0, X], \quad \mu \in[-1,1], \quad g=1, \ldots, N_{g}, \quad t \geq 0 \\
\left.I_{g}\right|_{\substack{\mu>0 \\
x=0}}=I_{g}^{\text {in+ }},\left.\quad I_{g}\right|_{\substack{\mu<0 \\
x=X}}=I_{g}^{\text {in- }},\left.\quad \quad I_{g}\right|_{t=0}=I_{g}^{0} \tag{2}
\end{gather*}
$$

- The material energy balance equation

$$
\begin{equation*}
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{N_{g}} \varkappa_{g}(T)\left(\int_{-1}^{1} I_{g}(x, \mu, t) d \mu-4 \pi B_{g}(T)\right),\left.\quad T\right|_{t=0}=T_{0} \tag{3}
\end{equation*}
$$

- Supersonic radiation flow problem neglecting material motion, photon scattering, heat conduction and external sources

Discretization of the BTE

- The POD-G projection method is formulated in discrete space
- The high-order Boltzmann transport equation

$$
\frac{1}{c} \frac{\partial I_{g}}{\partial t}(x, \mu, t)+\mu \frac{\partial I_{g}}{\partial x}(x, \mu, t)+\varkappa_{g}(T) I_{g}(x, \mu, t)=2 \pi \varkappa_{g}(T) B_{g}(T)
$$

- Discretize with: Discrete-Ordinates, Backward-Euler, Simple Corner Balance

$$
\begin{equation*}
\frac{1}{c \Delta t^{n}}\left(\mathbf{I}^{n}-\mathbf{I}^{n-1}\right)+\mathcal{L}_{h} \mathbf{I}^{n}+\mathcal{K}_{h}^{n}(T) \mathbf{I}^{n}=\mathbf{Q}^{n}(T) \tag{4}
\end{equation*}
$$

- Discrete operators $\mathcal{L}_{h}, \mathcal{K}_{h}^{n}(T)$ determined by scheme
- N_{\times}spatial cells, N_{μ} discrete directions, N_{t} time steps,
- $D=2 N_{x} N_{\mu} N_{g}$
- Solution vector: $\mathbf{I}^{n}=\left(\left(\boldsymbol{I}_{1}^{n}\right)^{\top} \ldots\left(\boldsymbol{I}_{N_{g}}^{n}\right)^{\top}\right)^{\top} \in \mathbb{R}^{D}$
- Construct snapshot matrix

$$
\begin{equation*}
\boldsymbol{A}=\left[\boldsymbol{I}^{1}, \ldots, \boldsymbol{I}^{N_{t}}\right] \tag{5}
\end{equation*}
$$

POD Basis Formulation

NC STATE UNIVERSITY

- Goal: expand intensities in basis functions $\left\{\boldsymbol{u}_{\ell}\right\}_{\ell=1}^{r}$

$$
\begin{equation*}
\mathbf{I}_{r}^{u}\left(t^{n}\right)=\sum_{\ell=1}^{r} \lambda_{\ell}^{n} \boldsymbol{u}_{\ell} \tag{6}
\end{equation*}
$$

- We formulate the POD basis $\left\{\boldsymbol{u}_{\ell}\right\}_{\ell=1}^{r}, r \ll D$ using snapshots in \boldsymbol{A}

$$
\begin{equation*}
\min _{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}} \sum_{n=1}^{N_{t}} \Delta t^{n}\left\|\mathbf{I}^{n}-\sum_{\ell=1}^{r}\left\langle\mathbf{I}^{n}, \boldsymbol{u}_{\ell}\right\rangle w \boldsymbol{u}_{\ell}\right\|_{w}^{2} \tag{7}
\end{equation*}
$$

- Weighted inner product specific to the discretization: $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{W}=\boldsymbol{u}^{\top} \boldsymbol{W} \boldsymbol{v}$

The Weighted Inner Product

NC STATE UNIVERSITY

- Standard POD uses the identity matrix $\boldsymbol{W}=\mathbb{I}$ so that $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{w}=\langle\boldsymbol{u}, \boldsymbol{v}\rangle$
- We seek \boldsymbol{W} to correspond to the discrete integration over space, angle, frequency
- For the considered discretization schemes we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{L_{x}} u(x, \mu, \nu) d x d \mu d \nu \Rightarrow \sum_{g=1}^{N_{g}} \sum_{m=1}^{N_{\mu}} w_{m} \sum_{i=1}^{N_{x}} \frac{\Delta x_{i}}{2}\left(\boldsymbol{u}_{g, m, i, L}+\boldsymbol{u}_{g, m, i, R}\right) \tag{8}
\end{equation*}
$$

- We find the matrix \boldsymbol{W} as

$$
\boldsymbol{W}=\bigoplus_{g=1}^{N_{g}} \bigoplus_{m=1}^{N_{\mu}} w_{m} \hat{\boldsymbol{W}}^{\times}, \quad \hat{\boldsymbol{W}}^{\times}=\bigoplus_{i=1}^{N_{x}}\left(\begin{array}{cc}
\frac{\Delta x_{i}}{2} & 0 \tag{9}\\
0 & \frac{\Delta x_{i}}{2}
\end{array}\right)
$$

Calculation of POD Basis

NC STATE UNIVERSITY

- Construct snapshot matrix

$$
\begin{equation*}
\boldsymbol{A}=\left[\boldsymbol{I}^{1}, \ldots, \boldsymbol{I}^{N_{t}}\right] \tag{10}
\end{equation*}
$$

- Calculate weighted snapshot matrix

$$
\begin{equation*}
\hat{\boldsymbol{A}}=\boldsymbol{W}^{1 / 2} \boldsymbol{A} \boldsymbol{D}^{1 / 2}, \quad \boldsymbol{D}=\operatorname{diag}\left(\Delta t^{1}, \ldots, \Delta t^{N_{t}}\right) \tag{11}
\end{equation*}
$$

- Find singular value decomposition of $\hat{\boldsymbol{A}}$

$$
\begin{gather*}
\hat{\boldsymbol{A}}=\hat{\boldsymbol{U}} \hat{\boldsymbol{S}} \hat{\boldsymbol{V}}^{\top} \tag{12}\\
\hat{\boldsymbol{U}}=\left[\hat{\mathbf{u}}_{1}, \ldots, \hat{\boldsymbol{u}}_{d}\right], \quad \hat{\boldsymbol{S}}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right), \quad \hat{\boldsymbol{V}}=\left[\hat{\mathbf{v}}_{1}, \ldots, \hat{\mathbf{v}}_{d}\right] \tag{13}
\end{gather*}
$$

- The POD basis is then found as $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right]$ with $d=\operatorname{rank}(\hat{\boldsymbol{A}})$ using

$$
\begin{equation*}
\boldsymbol{U}=\boldsymbol{W}^{-1 / 2} \hat{\boldsymbol{U}} \tag{14}
\end{equation*}
$$

Truncation Criteria \& Rank Determination

NC STATE UNIVERSITY

- Full rank system of equations for $\left\{\lambda_{\ell}^{n}\right\}$ is of size d using all \boldsymbol{u}_{ℓ}
- We seek a system of size $r \leq d$ using the first r basis functions in the expansion
- As r decreases, computational efficiency will increase while accuracy decreases
- We seek $r \ll D$ that will give certain level of accuracy
- Truncation criteria (tuning parameter):

$$
\begin{equation*}
\xi^{2}=\frac{\sum_{\ell=r+1}^{d} \sigma_{\ell}^{2}}{\sum_{\ell=1}^{d} \sigma_{\ell}^{2}} \tag{15}
\end{equation*}
$$

- Set some ξ and find rank r that satisfies the relation above
- This allows the method to easily trade computational requirements with accuracy at will per simulation

POD Galerkin Projection

$$
\frac{1}{c \Delta t^{n}}\left(\mathbf{I}^{n}-\mathbf{I}^{n-1}\right)+\mathcal{L}_{h} \mathbf{I}^{n}+\mathcal{K}_{h}^{n}(T) \mathbf{I}^{n}=\mathbf{Q}^{n}(T), \quad \mathbf{I}_{r}^{u}\left(t^{n}\right)=\sum_{\ell=1}^{r} \lambda_{\ell}^{n} \boldsymbol{u}_{\ell}
$$

- POD Galerkin-Projected BTE (apply $\left.\left\langle\boldsymbol{u}_{\ell}, \cdot\right\rangle w\right)$

$$
\begin{align*}
\frac{1}{c \Delta t^{n}}\left(\lambda_{\ell}^{n}-\lambda_{\ell}^{n-1}\right)+\sum_{\ell^{\prime}=1}^{r} \lambda_{\ell^{\prime}}^{n} & \left\langle\boldsymbol{u}_{\ell}, \mathcal{L}_{h} \boldsymbol{u}_{\ell^{\prime}}\right\rangle_{W} \\
& +\sum_{\ell^{\prime}=1}^{r} \lambda_{\ell^{\prime}}^{n}\left\langle\boldsymbol{u}_{\ell}, \mathcal{K}_{h}^{n}(T) \boldsymbol{u}_{\ell^{\prime}}\right\rangle_{W}=\left\langle\boldsymbol{u}_{\ell}, \mathbf{Q}^{n}(T)\right\rangle_{W} \tag{16}
\end{align*}
$$

- Used orthogonality of basis: $\left\langle\boldsymbol{u}_{\ell^{\prime}}, \boldsymbol{u}_{\ell}\right\rangle_{W}=\delta_{\ell, \ell^{\prime}}$
- Dense system of equations for $\left\{\lambda_{\ell}^{n}\right\}$

Multilevel Quasidiffusion Method

- High-order Boltzmann transport equation

$$
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\mu \frac{\partial I_{g}}{\partial x}+\varkappa_{g}(T) I_{g}=2 \pi \varkappa_{g}(T) B_{g}(T)
$$

- Eddington factor $\mathfrak{f}_{g}[/]=\int_{-1}^{1} \mu^{2} \lg d \mu / \int_{-1}^{1} \lg d \mu$
- Multigroup quasidiffusion equations for $E_{g}=\frac{1}{c} \int_{-1}^{1} I_{g} d \mu, \quad \boldsymbol{F}_{g}=\int_{-1}^{1} \mu I_{g} d \mu$

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\frac{\partial F_{g}}{\partial x}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial F_{g}}{\partial t}+c \frac{\partial}{\partial x}\left(\mathfrak{f}_{g}[/] E_{g}\right)+\varkappa_{g}(T) F_{g}=0
\end{gathered}
$$

- Effective grey problem for $E=\sum_{g=1}^{N_{g}} E_{g}, \quad \boldsymbol{F}=\sum_{g=1}^{N_{g}} \boldsymbol{F}_{g}$

$$
\begin{gathered}
\frac{\partial E}{\partial t}+\frac{\partial F}{\partial x}+c \bar{\varkappa}_{E} E=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial F}{\partial t}+c \frac{\partial(\bar{f} E)}{\partial x}+\bar{\varkappa}_{R} F+\bar{\eta} E=0 \\
\frac{\partial \varepsilon(T)}{\partial t}=c\left(\bar{\varkappa}_{E} E-\bar{\varkappa}_{B} a_{R} T^{4}\right)
\end{gathered}
$$

Reduced Order Model

- POD Galerkin Projected Boltzmann transport equation

NC STATE UNIVERSITY

$$
\frac{1}{c \Delta t^{n}}\left(\lambda_{\ell}^{n}-\lambda_{\ell}^{n-1}\right)+\sum_{\ell^{\prime}=1}^{r} \lambda_{\ell^{\prime}}^{n}\left\langle\boldsymbol{u}_{\ell}, \mathcal{L}_{h} \boldsymbol{u}_{\ell^{\prime}}\right\rangle_{w}+\sum_{\ell^{\prime}=1}^{r} \lambda_{\ell^{\prime}}^{n}\left\langle\boldsymbol{u}_{\ell}, \mathcal{K}_{h}^{n}(T) \boldsymbol{u}_{\ell^{\prime}}\right\rangle_{w}=\left\langle\boldsymbol{u}_{\ell}, \mathbf{Q}^{n}(T)\right\rangle_{w}
$$

- Approximate intensities $\mathbf{I}_{r}^{u}=\sum_{\ell=1}^{r} \lambda_{\ell}^{n} \boldsymbol{u}_{\ell} \Longrightarrow \tilde{\mathfrak{f}}_{g}\left[\mathbf{I}_{r}^{u}\right]$
- Multigroup quasidiffusion equations

$$
\begin{gathered}
\frac{\partial E_{g}}{\partial t}+\frac{\partial F_{g}}{\partial x}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) \\
\frac{1}{c} \frac{\partial F_{g}}{\partial t}+c \frac{\partial}{\partial x}\left(\tilde{f}_{g}\left[\mathbf{I}_{r}^{u}\right] E_{g}\right)+\varkappa_{g}(T) F_{g}=0
\end{gathered}
$$

- Effective grey problem

$$
\begin{gathered}
\frac{\partial E}{\partial t}+\frac{\partial F}{\partial x}+c \bar{\varkappa}_{E} E=c \bar{\varkappa}_{B} a_{R} T^{4} \\
\frac{1}{c} \frac{\partial F}{\partial t}+c \frac{\partial(\bar{f} E)}{\partial x}+\bar{\varkappa}_{R} F+\bar{\eta} E=0 \\
\frac{\partial \varepsilon(T)}{\partial t}=c\left(\bar{\varkappa}_{E} E-\bar{\varkappa}_{B} a_{R} T^{4}\right)
\end{gathered}
$$

Numerical Test Problem

NC STATE UNIVERSITY

$$
\left.\begin{array}{rc|c}
\begin{array}{c}
\left.I_{v}\right|_{x=0}=B_{v}\left(T_{b}\right) \\
\longrightarrow
\end{array} & \begin{array}{c}
\\
\longrightarrow
\end{array} \kappa_{v}=\frac{27}{v^{3}}\left(1-e^{-\frac{v}{T}}\right) \\
\varepsilon(T)=c_{v} T
\end{array}\right) \text { Vacuum }
$$

- Fleck \& Cummings, 1971
- 17 frequency (energy) groups
- 60 spatial cells, $\Delta x=0.1 \mathrm{~cm}$
- $\Delta t=2 \times 10^{-2} \mathrm{~ns}$
- $0 \leq t \leq 6 \mathrm{~ns}, 300$ time steps
- $D S_{4}$ Gaussian quadrature set
- Finite volume in space \& fully implicit scheme for LOQD eqs.

Numerical Test Problem

NC STATE UNIVERSITY

- The F-C test is characterized by three distinct temporal stages
- Rapid wave formation $t \in[0,0.3 \mathrm{~ns}]$
- Propagation of wave from left to right $t \in(0.3,1.2 \mathrm{~ns}]$
- Slow heating of entire domain towards steady state $t \in(1.2,6 \mathrm{~ns}]$

Temperature

Energy density
-

Calculation of Basis

NC STATE UNIVERSITY

- We calculate a unique POD basis for each distinct stage of the F-C test
- $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}$ with $d_{i}=\operatorname{rank}\left(\boldsymbol{A}_{i}\right)$
- ranks $r_{i} \leq d_{i}$ are calculated based off singular values of \boldsymbol{A}_{i}

$$
\left(\sum_{\ell=r_{i}+1}^{d_{i}} \sigma_{\ell}^{2} / \sum_{\ell=1}^{d_{i}} \sigma_{\ell}^{2}\right)^{\frac{1}{2}}<\xi
$$

- Stage $1\left(r_{1}\right)$: full rank $=15$
- Stage $2\left(r_{2}\right)$: full rank $=45$
- Stage $3\left(r_{3}\right)$: full rank $=240$

Numerical Results

NC STATE UNIVERSITY

- Relative errors in 2-norm at each instant of time

Temperature

Energy density

Numerical Results

NC STATE UNIVERSITY

- Relative errors in 2-norm plotted vs ξ for certain times

Temperature

Energy density

Conclusion

NC STATE UNIVERSITY

- We developed and tested a prototype advanced ROM for TRT in 1D geometry
- A POD Galerkin-Projected BTE is coupled with the low-order quasidiffusion equations to give approximate closure
- The Projected BTE is dense but contains many less degrees of freedom compared to the original BTE
- The expansion coefficients directly depend on material temperature, making the ROM naturally parametric
- The ROM was shown to produce highly accurate solutions, and converge uniformly to the reference solution as rank is increased
- Results are promising, and future work includes:
- Extension of the method into 2D geometry
- Investigation into performance over given parametric spaces

