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Radiation Transport

We consider problems of high-energy density physics, where radiative transfer is
the main mechanism of energy redistribution

Described by complex systems of multiphyiscal differential equations

Numerical simulations of these complex multiphysical problems are faced with
several challenges

Strong nonlinearity
Multi-scale characterization
High-dimensionality

The Boltzmann transport equation (BTE) drives the dimensionality
The solution is 7-dimensional
Independent variables include: time (t), spatial position (r), direction of
motion (Ω), frequency (ν) describing photons
Simple discretization - 100 nodes each axis: 1012 degrees of freedom
The high dimensionality imposes large computational burden and memory
footprint

Reduced order models for the BTE are commonly employed to reduce the problem
of dimensionality
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Model Order Reduction for the BTE

We develop a reduced-order model (ROM) for the BTE to reduce the
dimensionality of multiphysical simulations

Reducing both computational cost and memory requirements

Basic idea of the model:

Formulate a proper orthogonal decomposition - Galerkin (POD-G) projection
for the BTE using known solution data
The photon intensities are expanded about the POD basis
The projected form of the BTE solves for the coefficients of this expansion
for photon intensities
Equip the low-dimensional projected BTE with a system of low-order
moment equations of the BTE

The POD-G BTE serves to calculate closures for the moment equations, which are
coupled to the specific multiphysics equations of interest
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Thermal Radiative Transfer

The first prototype of this method is formulated on the multigroup thermal
radiative transfer (TRT) problem in 1D slab geometry
The high-order Boltzmann transport equation

1
c
∂Ig
∂t (x , µ, t) + µ

∂Ig
∂x (x , µ, t) + κg (T )Ig (x , µ, t) = 2πκg (T )Bg (T ) (1)

x ∈ [0,X ], µ ∈ [−1, 1], g = 1, . . . ,Ng , t ≥ 0,
Ig |µ>0

x=0
= I in+

g , Ig |µ<0
x=X

= I in−
g , Ig |t=0 = I0

g , (2)

The material energy balance equation

∂ε(T )
∂t =

Ng∑
g=1

κg (T )
(∫ 1

−1
Ig (x , µ, t)dµ− 4πBg (T )

)
, T |t=0 = T0. (3)

Supersonic radiation flow problem neglecting material motion, photon scattering,
heat conduction and external sources
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Discretization of the BTE

The POD-G projection method is formulated in discrete space
The high-order Boltzmann transport equation

1
c
∂Ig
∂t (x , µ, t) + µ

∂Ig
∂x (x , µ, t) + κg (T )Ig (x , µ, t) = 2πκg (T )Bg (T )

Discretize with: Discrete-Ordinates, Backward-Euler, Simple Corner Balance

1
c∆tn

(
In − In−1)+ LhIn +Kn

h(T )In = Qn(T ) , (4)

Discrete operators Lh, Kn
h(T ) determined by scheme

Nx spatial cells, Nµ discrete directions, Nt time steps,
D = 2Nx NµNg

Solution vector: In = ((In
1)> . . . (In

Ng )>)> ∈ RD

Construct snapshot matrix
A = [I1, . . . , INt ] (5)
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POD Basis Formulation

Goal: expand intensities in basis functions {u`}r
`=1

Iu
r (tn) =

r∑
`=1

λn
`u` (6)

We formulate the POD basis {u`}r
`=1, r � D using snapshots in A

min
u1,...,ur

Nt∑
n=1

∆tn
∥∥∥∥In −

r∑
`=1

〈In, u`〉W u`
∥∥∥∥2

W
, (7)

Weighted inner product specific to the discretization: 〈u, v〉W = u>W v
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The Weighted Inner Product

Standard POD uses the identity matrix W = I so that 〈u, v〉W = 〈u, v〉
We seek W to correspond to the discrete integration over space, angle, frequency
For the considered discretization schemes we have∫ ∞

0

∫ 1

−1

∫ Lx

0
u(x , µ, ν)dxdµdν ⇒

Ng∑
g=1

Nµ∑
m=1

wm

Nx∑
i=1

∆xi

2 (ug,m,i,L + ug,m,i,R ) (8)

We find the matrix W as

W =
Ng⊕

g=1

Nµ⊕
m=1

wmŴ x
, Ŵ x =

Nx⊕
i=1

(
∆xi

2 0
0 ∆xi

2

)
(9)
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Calculation of POD Basis

Construct snapshot matrix
A = [I1, . . . , INt ] (10)

Calculate weighted snapshot matrix

Â = W 1/2AD1/2, D = diag(∆t1, . . . ,∆tNt ) (11)

Find singular value decomposition of Â

Â = ÛŜV̂> (12)
Û = [û1, . . . , ûd ], Ŝ = diag(σ1, . . . , σd ), V̂ = [v̂1, . . . , v̂d ] (13)

The POD basis is then found as U = [u1, . . . , ud ] with d = rank(Â) using

U = W−1/2Û (14)
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Truncation Criteria & Rank Determination

Full rank system of equations for {λn
`} is of size d using all u`

We seek a system of size r ≤ d using the first r basis functions in the expansion
As r decreases, computational efficiency will increase while accuracy decreases
We seek r � D that will give certain level of accuracy
Truncation criteria (tuning parameter):

ξ2 =
∑d

`=r+1 σ
2
`∑d

`=1 σ
2
`

(15)

Set some ξ and find rank r that satisfies the relation above
This allows the method to easily trade computational requirements with accuracy
at will per simulation
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POD Galerkin Projection

1
c∆tn

(
In − In−1)+ LhIn +Kn

h(T )In = Qn(T ), Iu
r (tn) =

r∑
`=1

λn
`u`

POD Galerkin-Projected BTE (apply 〈u`, ·〉W )

1
c∆tn

(
λn
` − λn−1

`

)
+

r∑
`′=1

λn
`′
〈
u`,Lhu`′

〉
W

+
r∑

`′=1

λn
`′
〈
u`,Kn

h(T )u`′
〉

W
=
〈
u`,Qn(T )

〉
W

(16)

Used orthogonality of basis:
〈
u`′ , u`

〉
W

= δ`,`′

Dense system of equations for {λn
`}
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Multilevel Quasidiffusion Method
High-order Boltzmann transport equation

1
c
∂Ig
∂t + µ

∂Ig
∂x + κg (T )Ig = 2πκg (T )Bg (T )

Eddington factor fg [I] =
∫ 1
−1 µ

2Ig dµ
/∫ 1
−1 Ig dµ

Multigroup quasidiffusion equations for Eg = 1
c

∫ 1
−1 Ig dµ, F g =

∫ 1
−1 µIg dµ

∂Eg

∂t + ∂Fg

∂x + cκg (T )Eg = 4πκg (T )Bg (T ),

1
c
∂Fg

∂t + c ∂

∂x

(
fg [I]Eg

)
+ κg (T )Fg = 0

Effective grey problem for E =
∑Ng

g=1 Eg , F =
∑Ng

g=1 F g

∂E
∂t + ∂F

∂x + cκ̄E E = cκ̄BaRT 4

1
c
∂F
∂t + c ∂(̄fE)

∂x + κ̄RF + η̄E = 0

∂ε(T )
∂t = c

(
κ̄E E − κ̄BaRT 4)
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Reduced Order Model
POD Galerkin Projected Boltzmann transport equation

1
c∆tn

(
λn
`−λn−1

`

)
+

r∑
`′=1

λn
`′
〈
u`,Lhu`′

〉
W

+
r∑

`′=1

λn
`′
〈
u`,Kn

h(T )u`′
〉

W
=
〈
u`,Qn(T )

〉
W

Approximate intensities Iu
r =

∑r
`=1 λ

n
`u` =⇒ f̃g [Iu

r ]
Multigroup quasidiffusion equations

∂Eg

∂t + ∂Fg

∂x + cκg (T )Eg = 4πκg (T )Bg (T ),

1
c
∂Fg

∂t + c ∂

∂x

(
f̃g [Iu

r ]Eg

)
+ κg (T )Fg = 0

Effective grey problem
∂E
∂t + ∂F

∂x + cκ̄E E = cκ̄BaRT 4

1
c
∂F
∂t + c ∂(̄fE)

∂x + κ̄RF + η̄E = 0

∂ε(T )
∂t = c

(
κ̄E E − κ̄BaRT 4)
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Numerical Test Problem

Fleck & Cummings, 1971
17 frequency (energy) groups
60 spatial cells, ∆x =0.1 cm
∆t =2×10−2 ns
0 ≤ t ≤ 6 ns, 300 time steps
DS4 Gaussian quadrature set
Finite volume in space & fully implicit scheme for LOQD eqs.
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Numerical Test Problem

The F-C test is characterized by three distinct temporal stages

Rapid wave formation t ∈ [0, 0.3ns]
Propagation of wave from left to right t ∈ (0.3, 1.2ns]
Slow heating of entire domain towards steady state t ∈ (1.2, 6ns]

Temperature Energy density
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Calculation of Basis

We calculate a unique POD basis for each distinct stage of the F-C test
A1, A2, A3 with di = rank(Ai )

ranks ri ≤ di are calculated
based off singular values of Ai( di∑

`=ri +1

σ2
`

/ di∑
`=1

σ2
`

) 1
2

< ξ

Stage 1 (r1): full rank = 15
Stage 2 (r2): full rank = 45
Stage 3 (r3): full rank = 240
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0

3 0
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9 0

1 2 0
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2 4 0
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nk

 of
 Ex

pa
ns
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 (r)

ε
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 r 2
 r 3
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Numerical Results

Relative errors in 2-norm at each instant of time
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Numerical Results

Relative errors in 2-norm plotted vs ξ for certain times
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Conclusion

We developed and tested a prototype advanced ROM for TRT in 1D geometry
A POD Galerkin-Projected BTE is coupled with the low-order quasidiffusion
equations to give approximate closure
The Projected BTE is dense but contains many less degrees of freedom compared
to the original BTE
The expansion coefficients directly depend on material temperature, making the
ROM naturally parametric
The ROM was shown to produce highly accurate solutions, and converge uniformly
to the reference solution as rank is increased

Results are promising, and future work includes:

Extension of the method into 2D geometry
Investigation into performance over given parametric spaces
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