Variations on Diffusion-Based Synthetic Acceleration for Multigroup S_N Transport

James S. Warsa¹, Joseph M. Coale^{1,2}, Dmitriy Y. Anistratov² and Jae H. Chang¹

Los Alamos National Laboratory¹, North Carolina State University²

Advanced Iteration Methods for Particle Transport – M&C 2021

LA-UR-21-29684

Multigroup S_N Transport Iterations

- Iterative solution of the transport equation can converge slowly for optically-thick problems and problems with effective scattering ratios near 1.0
- Computational efficiency can be improved with synthetic acceleration of the transport iterations
- Energy groups are coupled to one another by the scattering operators of the problem
 - Thermal neutron energy groups in reactor applications
 - Boltzmann-Compton scattering in photon transport applications
- Iterative acceleration in multigroup applications complicates the application of synthetic acceleration methods
- Synthetic acceleration can formulated to be applied as a preconditioner for more advanced iterative methods

イロト イポト イヨト イヨト 二日

- An equation for the error in the iterative solution is found by subtracting the iterative equation from the exact equation
- The error equation is identical to the original equation with the iterative residual as a source term
- A synthetic acceleration method uses some low-order approximation to the error equation that can be solved "more easily" than the original equation
- As long as the approximate error equation is "close enough" in some sense to the original error equation, convergence will improve
- The goal is to find a low-order equation that can be solved efficiently enough and whose improvement in convergence is good enough that the overall time-to-solution is faster than it would be otherwise

イロト イボト イヨト イヨト

Diffusion-based Synthetic Acceleration

- The diffusion equation is a linear-in-angle (Galerkin) approximation to the transport equation
- The most slowly converging error modes of simple fixed-point (source) iteration are also linear in angle
- Using the diffusion equation as the low-order approximation to the error equation therefore makes sense and will therefore also improve convergence rate
- In multigroup problems, the fully-coupled-in-energy diffusion equation must be employed as the low-order system to acheive the analytically predicted (continuous in space and angle) improvement in convergence rate (measured by the spectral radius)
- Various approximations to the fully-coupled, low-order diffusion equation will be considered that have the potential to improve overall computational efficiency
- We investigate and compare the impact that these approximations have on the analytically predicted spectral radius

イロト イポト イヨト イヨト 二日

• Multigroup Boltzmann transport equation

$$\Omega_m \cdot \nabla \psi_{g,m} + \sigma_{t,g} \psi_{g,m} = \frac{1}{4\pi} \sum_{g'=1}^G \sigma_{s,g' \to g} \phi_{g'} + q_g, \qquad (1)$$
$$g = 1, \dots, G, \quad m = 1, \dots, M$$

•
$$\phi_g = \sum_{m=1}^M w_m \psi_{g,m}$$

- Here we consider
 - Discretization in angle with the method of discrete ordinates (S_N)
 - Isotropic scattering

Image: A match a ma

Operator Notation

$$\mathbf{\Omega}_m \cdot \nabla \psi_{g,m} + \sigma_{t,g} \psi_{g,m} = \frac{1}{4\pi} \sum_{g'=1}^G \sigma_{s,g' \to g} \phi_{g'} + q_g,$$

• In operator notation the multigroup S_N equations become

$$L\psi = MSD\psi + q \tag{2}$$

Image: A match a ma

Vectors:

•
$$\psi = [\psi_1, \dots, \psi_g, \dots, \psi_G]^\top$$

• $\phi = [\phi_1, \dots, \phi_g, \dots, \phi_G]^\top$

• Operators:

•
$$D\psi = \phi$$

• $S_{i,j} = \sigma_{s,j \to i}$
• $M = \frac{1}{4\pi}I$
• $(L\psi)_{g,m} = \Omega_m \cdot \nabla \psi_{g,m} + \sigma_{t,g}\psi_{g,m}$

프 > 프

Sac

• Given an initial guess ϕ^0 , for $\ell = 0, \ldots$

$$\boldsymbol{L}\boldsymbol{\psi}^{\ell+1} = \boldsymbol{M}\boldsymbol{S}\boldsymbol{D}\boldsymbol{\psi}^{\ell} + \boldsymbol{q} \tag{3}$$

• L is efficiently inverted via an S_N sweep to leverage the natural block-lower triangular structure

$$\psi^{\ell+1} = \boldsymbol{L}^{-1} \boldsymbol{M} \boldsymbol{S} \boldsymbol{D} \psi^{\ell} + \boldsymbol{L}^{-1} \boldsymbol{q}$$
(4)

Application of **D** on the left gives

$$\boldsymbol{D}\psi^{\ell+1} = \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{M}\boldsymbol{S}\boldsymbol{D}\psi^{\ell} + \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{q}$$
(5)

< □ > < 同 >

• Given an initial guess ϕ^0 , for $\ell = 0, \ldots$

$$\boldsymbol{L}\boldsymbol{\psi}^{\ell+1} = \boldsymbol{M}\boldsymbol{S}\boldsymbol{D}\boldsymbol{\psi}^{\ell} + \boldsymbol{q} \tag{3}$$

• L is efficiently inverted via an S_N sweep to leverage the natural block-lower triangular structure

$$\psi^{\ell+1} = \boldsymbol{L}^{-1} \boldsymbol{M} \boldsymbol{S} \boldsymbol{D} \psi^{\ell} + \boldsymbol{L}^{-1} \boldsymbol{q}$$
(4)

Application of **D** on the left gives

$$\phi^{\ell+1} = \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{M}\boldsymbol{S}\phi^{\ell} + \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{q}$$
(5)

< □ > < 同 >

• Given an initial guess ϕ^0 , for $\ell = 0, \ldots$

$$L\psi^{\ell+1} = MSD\psi^{\ell} + q \tag{3}$$

• L is efficiently inverted via an S_N sweep to leverage the natural block-lower triangular structure

$$\psi^{\ell+1} = \boldsymbol{L}^{-1} \boldsymbol{M} \boldsymbol{S} \boldsymbol{D} \psi^{\ell} + \boldsymbol{L}^{-1} \boldsymbol{q}$$
(4)

Application of **D** on the left gives

$$\phi^{\ell+1} = \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{M}\boldsymbol{S}\phi^{\ell} + b \tag{5}$$

$$b = \boldsymbol{D}\boldsymbol{L}^{-1}\boldsymbol{q} \tag{6}$$

Diffusion Synthetic Acceleration (DSA)

• Exact solution ψ

$$L\psi = MSD\psi + q$$

• Iterative solution $\psi^{\ell+1}$

$$L\psi^{\ell+1} = MSD\psi^{\ell} + q$$

• Error
$$e^{\ell+1} = \psi - \psi^{\ell+1}$$

$$Le^{\ell+1} = MSD(\psi - \psi^{\ell} \pm \psi^{\ell+1})$$
(7)
= MSDe^{\ell+1} + r^{\ell+1} (8)

Image: A match a ma

Iterative residual

$$r^{\ell+1} = \boldsymbol{MS}(\phi^{\ell+1} - \phi^{\ell})$$

Э

Sac

Diffusion Synthetic Acceleration (DSA)

• Exact solution ψ

$$L\psi = MSD\psi + q$$

• Iterative solution $\psi^{\ell+1}$

$$L\psi^{\ell+1} = MSD\psi^{\ell} + q$$

• Error
$$e^{\ell+1} = \psi - \psi^{\ell+1}$$

$$Le^{\ell+1} = MSD(\psi - \psi^{\ell} \pm \psi^{\ell+1})$$
(7)
= MSDe^{\ell+1} + r^{\ell+1} (8)

< □ > < 同 > < 三 >

Iterative residual

$$r^{\ell+1} = \boldsymbol{MS}(\phi^{\ell+1} - \phi^{\ell})$$

Э

Sac

Diffusion Synthetic Acceleration (DSA)

• Multigroup diffusion equation for the error equation

$$-\nabla \cdot (D_{C,g}\nabla)f_g + \sigma_{t,g}f_g = \sum_{g'=1}^G \sigma_{s,g'\to g}f_{g'} + r_g$$
(9)

● *f* = **D***e*

In operator notation

$$(\boldsymbol{L}_D + \boldsymbol{T} - \boldsymbol{S})f = r \tag{10}$$

イロト イボト イヨト イヨト

Operators:

•
$$(\boldsymbol{L}_D f)_g = -\boldsymbol{\nabla} \cdot (D_{C,g} \boldsymbol{\nabla}) f_g$$

• $(\boldsymbol{T} f)_g = \sigma_{t,g} f_g$

3

Fully-Coupled DSA (FCDSA)

$$\phi^{\ell+1/2} = DL^{-1}MS\phi^{\ell} + b,$$

$$\downarrow$$

$$r^{\ell+1/2} = S(\phi^{\ell+1/2} - \phi^{\ell}),$$

$$\downarrow$$

$$f^{\ell+1/2} = (L_D + T - S)^{-1}r^{\ell+1/2},$$

$$\downarrow$$

$$\phi^{\ell+1} = \phi^{\ell+1/2} + f^{\ell+1/2}$$

Warsa, Coale, Anistratov & Chang

October 4, 2021 10 / 15

=

900

< □ > < □ > < □ > < □ > < □ >

Decoupled DSA (DDSA)

$$(\boldsymbol{L}_D + \boldsymbol{T} - \boldsymbol{S})\boldsymbol{f} = \boldsymbol{r} \tag{11}$$

• Compute eigendecomposition

$$(\boldsymbol{T} - \boldsymbol{S}) = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1} \tag{12}$$

• Substitute with $z = Q^{-1}f$

$$(L_D + Q \Lambda Q^{-1}) f^{\ell + 1/2} = r^{\ell + 1/2}$$
(13)

• Left-multiply by Q^{-1} , assume commutivity with L_D

(14)

Sac

Iterative correction becomes

$$f^{\ell+1/2} = Q(L_D + \Lambda)^{-1} Q^{-1} r^{\ell+1/2}$$
(15)

イロト イロト イヨト イヨト

Warsa, Coale, Anistratov & Chang

M&C 2021

October 4, 2021 11 / 15

3

Decoupled DSA (DDSA)

$$(\boldsymbol{L}_D + \boldsymbol{T} - \boldsymbol{S})f = r \tag{11}$$

Compute eigendecomposition

$$(\boldsymbol{T} - \boldsymbol{S}) = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1} \tag{12}$$

• Substitute with $z = Q^{-1}f$

$$(\boldsymbol{L}_{D}\boldsymbol{Q}+\boldsymbol{Q}\boldsymbol{\Lambda})\boldsymbol{z}^{\ell+1/2}=\boldsymbol{r}^{\ell+1/2} \tag{13}$$

• Left-multiply by Q^{-1} , assume commutivity with L_D

$$Q^{-1}(L_D Q + Q \Lambda) z^{\ell+1/2} = Q^{-1} r^{\ell+1/2}$$
(14)

Iterative correction becomes

$$f^{\ell+1/2} = Q(L_D + \Lambda)^{-1} Q^{-1} r^{\ell+1/2}$$
(15)

イロト イボト イヨト イヨト

Warsa, Coale, Anistratov & Chang

M&C 2021

= ~ ~ ~

Decoupled DSA (DDSA)

$$(\boldsymbol{L}_D + \boldsymbol{T} - \boldsymbol{S})f = r \tag{11}$$

• Compute eigendecomposition

$$(\boldsymbol{T} - \boldsymbol{S}) = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1} \tag{12}$$

• Substitute with $z = Q^{-1}f$

$$(\boldsymbol{L}_{D}\boldsymbol{Q}+\boldsymbol{Q}\boldsymbol{\Lambda})\boldsymbol{z}^{\ell+1/2}=\boldsymbol{r}^{\ell+1/2} \tag{13}$$

• Left-multiply by Q^{-1} , assume commutivity with L_D

$$(L_D + \Lambda) z^{\ell + 1/2} = Q^{-1} r^{\ell + 1/2}$$
(14)

Iterative correction becomes

$$f^{\ell+1/2} = Q(L_D + \Lambda)^{-1} Q^{-1} r^{\ell+1/2}$$
(15)

イロト イロト イヨト イヨト

3

500

Approximate & Grey DSA

Approximate DSA (ADSA)

$$f^{\ell+1/2} = (L_D + T - S_D)^{-1} r^{\ell+1/2},$$

 $S_D = diag(S)$

• Grey DSA (GDSA)

$$f^{\ell+1/2} = \xi (\hat{L}_D + \hat{\sigma}_t - \hat{\sigma}_s)^{-1} \hat{r}^{\ell+1/2},$$
$$T^{-1} S \xi = \lambda \xi,$$
$$\hat{D}_C = \sum_{g=1}^G \frac{1}{3\sigma_{t,g}} \xi_g, \ \hat{\sigma}_t = \sum_{g=1}^G \sigma_{t,g} \xi_g, \ \hat{\sigma}_s = \sum_{g=1}^G (S\xi)_g, \ \hat{r}^{\ell+1/2} = \sum_{g=1}^G r_g^{\ell+1/2}$$

Warsa, Coale, Anistratov & Chang

October 4, 2021 12 / 15

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- We consider two 1D homogeneous test problems
 - C5G7 moderator cross sections (7-group problem)
 - Randomly generated cross sections (10-group problem)
 - 32 cm slab, S_8 Gauss-Legendre quadrature, 128 mesh cells
- Random cross section generation

$$\begin{aligned} \boldsymbol{S}_{i,j} &= \sigma_{s,j \to i} = \frac{r_j c_{ij} \sigma_{t,j}}{\sum_i c_{ij}} \\ 0.9 &\leq r_j \leq 0.9999, \quad 0 \leq c_{ij} \leq 1, \quad 1.5 \leq \sigma_{t,j} \leq 2.5 \end{aligned}$$

< = > < = > < = > < = >

• C5G7 cross sections

0	Random	10-group	cross	sections
---	--------	----------	-------	----------

DSA Method	Analysis	Numerical
NONE	0.98617	0.98559
FCDSA	0.21526	0.19551
ADSA	0.83849	0.83249
DDSA	0.33168	0.31738
GDSA	0.68367	0.67291

DSA Method	Analysis	Numerical
NONE	0.96258	0.96618
FCDSA	0.20976	0.18925
ADSA	0.91547	0.91455
DDSA	0.27598	0.25748
GDSA	0.54968	0.54890

イロト イボト イヨト イヨト

= 990

Conclusion

- Spectral radii for new and existing diffusion-based synthetic acceleration methods were compared
- The new method, DDSA, uses a low-order diffusion equation that is decoupled in energy via an eigendecomposition
- It exhibits a spectral radius close to the best-case FCDSA method and smaller than GDSA and ADSA
- The DDSA low-order system is block-diagonal and can be solved one group at a time, time-to-solution could be much faster
- Especially true for large numbers of groups or if the low-order system is solved directly (especially for a parallel-decomposed mesh on large numbers of ranks)
- Future work
 - Consider computational efficiency for the methods on large-scale, MPI-parallel, highly-scattering problems with many groups
 - Compare solving the low-order all groups at once vs. solving one group (or some other number of groups) at a time
 - Consider retaining only an intermediate number of eigenmodes (even a single mode, which would closely resemble GDSA)
 - Investigate the impact of solving the low-order system iteratively vs. direct inversion (currently SuperLU)
 - Combine parallel mesh decomposition and decomposition by energy group