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Multigroup SN Transport Iterations

Iterative solution of the transport equation can converge slowly for optically-thick
problems and problems with effective scattering ratios near 1.0
Computational efficiency can be improved with synthetic acceleration of the
transport iterations

Energy groups are coupled to one another by the scattering operators of the
problem

Thermal neutron energy groups in reactor applications
Boltzmann-Compton scattering in photon transport applications

Iterative acceleration in multigroup applications complicates the application of
synthetic acceleration methods
Synthetic acceleration can formulated to be applied as a preconditioner for more
advanced iterative methods
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Synthetic Acceleration

An equation for the error in the iterative solution is found by subtracting the
iterative equation from the exact equation
The error equation is identical to the original equation with the iterative residual
as a source term
A synthetic acceleration method uses some low-order approximation to the error
equation that can be solved “more easily” than the original equation
As long as the approximate error equation is “close enough” in some sense to the
original error equation, convergence will improve
The goal is to find a low-order equation that can be solved efficiently enough and
whose improvement in convergence is good enough that the overall
time-to-solution is faster than it would be otherwise
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Diffusion-based Synthetic Acceleration

The diffusion equation is a linear-in-angle (Galerkin) approximation to the
transport equation
The most slowly converging error modes of simple fixed-point (source) iteration
are also linear in angle
Using the diffusion equation as the low-order approximation to the error equation
therefore makes sense and will therefore also improve convergence rate
In multigroup problems, the fully-coupled-in-energy diffusion equation must be
employed as the low-order system to acheive the analytically predicted (continuous
in space and angle) improvement in convergence rate (measured by the spectral
radius)
Various approximations to the fully-coupled, low-order diffusion equation will be
considered that have the potential to improve overall computational efficiency
We investigate and compare the impact that these approximations have on the
analytically predicted spectral radius
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Boltzmann Transport Equation

Multigroup Boltzmann transport equation

Ωm · ∇ψg,m + σt,gψg,m = 1
4π

G∑
g′=1

σs,g′→gφg′ + qg , (1)

g = 1, . . . ,G , m = 1, . . . ,M

φg =
∑M

m=1 wmψg,m

Here we consider

Discretization in angle with the method of discrete ordinates (SN)
Isotropic scattering
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Operator Notation

Ωm · ∇ψg,m + σt,gψg,m = 1
4π

G∑
g′=1

σs,g′→gφg′ + qg ,

In operator notation the multigroup SN equations become

Lψ = MSDψ + q (2)

Vectors:

ψ = [ψ1, . . . , ψg , . . . , ψG ]>
φ = [φ1, . . . , φg , . . . , φG ]>

Operators:

Dψ = φ
S i,j = σs,j→i
M = 1

4π I
(Lψ)g,m = Ωm · ∇ψg,m + σt,gψg,m
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Fixed-Point (Source) Iteration

Given an initial guess φ0, for ` = 0, . . .

Lψ`+1 = MSDψ` + q (3)

L is efficiently inverted via an SN sweep to leverage the natural block-lower
triangular structure

ψ`+1 = L−1MSDψ` + L−1q (4)

Application of D on the left gives

Dψ`+1 = DL−1MSDψ` + DL−1q (5)
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Lψ`+1 = MSDψ` + q (3)

L is efficiently inverted via an SN sweep to leverage the natural block-lower
triangular structure

ψ`+1 = L−1MSDψ` + L−1q (4)

Application of D on the left gives

φ`+1 = DL−1MSφ` + b (5)
b = DL−1q (6)
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Diffusion Synthetic Acceleration (DSA)

Exact solution ψ
Lψ = MSDψ + q

Iterative solution ψ`+1

Lψ`+1 = MSDψ` + q

Error e`+1 = ψ − ψ`+1

Le`+1 = MSD(ψ − ψ` ± ψ`+1) (7)
= MSDe`+1 + r `+1 (8)

Iterative residual
r `+1 = MS(φ`+1 − φ`)
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Diffusion Synthetic Acceleration (DSA)

Multigroup diffusion equation for the error equation

−∇ · (DC,g ∇)fg + σt,g fg =
G∑

g′=1

σs,g′→g fg′ + rg (9)

f = De
In operator notation

(LD + T − S)f = r (10)

Operators:

(LDf )g = −∇ · (DC,g ∇)fg
(T f )g = σt,g fg
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Fully-Coupled DSA (FCDSA)

φ`+1/2 = DL−1MSφ` + b,
⇓

r `+1/2 = S(φ`+1/2 − φ`),
⇓

f `+1/2 = (LD + T − S)−1r `+1/2,

⇓

φ`+1 = φ`+1/2 + f `+1/2
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Decoupled DSA (DDSA)

(LD + T − S)f = r (11)

Compute eigendecomposition

(T − S) = QΛQ−1 (12)

Substitute with z = Q−1f

(LD + QΛQ−1)f `+1/2 = r `+1/2 (13)

Left-multiply by Q−1, assume commutivity with LD

(14)

Iterative correction becomes

f `+1/2 = Q(LD + Λ)−1Q−1r `+1/2 (15)
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Approximate & Grey DSA

Approximate DSA (ADSA)

f `+1/2 = (LD + T − SD)−1r `+1/2,

SD = diag(S)

Grey DSA (GDSA)

f `+1/2 = ξ(L̂D + σ̂t − σ̂s)−1 r̂ `+1/2,

T−1Sξ = λξ,

D̂C =
G∑

g=1

1
3σt,g

ξg , σ̂t =
G∑

g=1

σt,gξg , σ̂s =
G∑

g=1

(Sξ)g , r̂ `+1/2 =
G∑

g=1

r `+1/2
g
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Numerical Results

We consider two 1D homogeneous test problems

C5G7 moderator cross sections (7-group problem)
Randomly generated cross sections (10-group problem)
32 cm slab, S8 Gauss-Legendre quadrature, 128 mesh cells

Random cross section generation

S i,j = σs,j→i = rjcijσt,j∑
i cij

0.9 ≤ rj ≤ 0.9999, 0 ≤ cij ≤ 1, 1.5 ≤ σt,j ≤ 2.5
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Numerical Results

C5G7 cross sections

DSA Method Analysis Numerical
NONE 0.98617 0.98559
FCDSA 0.21526 0.19551
ADSA 0.83849 0.83249
DDSA 0.33168 0.31738
GDSA 0.68367 0.67291

Random 10-group cross sections

DSA Method Analysis Numerical
NONE 0.96258 0.96618
FCDSA 0.20976 0.18925
ADSA 0.91547 0.91455
DDSA 0.27598 0.25748
GDSA 0.54968 0.54890
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Conclusion
Spectral radii for new and existing diffusion-based synthetic acceleration methods
were compared
The new method, DDSA, uses a low-order diffusion equation that is decoupled in
energy via an eigendecomposition
It exhibits a spectral radius close to the best-case FCDSA method and smaller
than GDSA and ADSA
The DDSA low-order system is block-diagonal and can be solved one group at a
time, time-to-solution could be much faster
Especially true for large numbers of groups or if the low-order system is solved
directly (especially for a parallel-decomposed mesh on large numbers of ranks)
Future work

Consider computational efficiency for the methods on large-scale,
MPI-parallel, highly-scattering problems with many groups
Compare solving the low-order all groups at once vs. solving one group (or
some other number of groups) at a time
Consider retaining only an intermediate number of eigenmodes (even a single
mode, which would closely resemble GDSA)
Investigate the impact of solving the low-order system iteratively vs. direct
inversion (currently SuperLU)
Combine parallel mesh decomposition and decomposition by energy group
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