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Radiative Transfer

• We are interested in nonlinear radiative transfer problems
• Radiative transfer effects account for majority of energy redistribution in materials

at extremely high temperatures
– Strength increases as a quartic function of temperature (∝ T 4)
– Energy redistributed by emission, propagation, absorption of photon radiation
– Important in fields like astrophysics, plasma physics, high-energy density physics

• The involved systems of equations are typically:
– Multiphysical systems of partial differential equations
– Characterized by strong nonlinear behavior and coupling between equations
– Multi-scale behavior in space, time, energy

• The Boltzmann transport equation (BTE) is used to model radiative transfer
component of problems
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Iteration Methods

• We consider problems which are discretized implicitly in time (Backward-Euler)
• An iterative method must be invoked to obtain the solution at each time step
• We present a novel iterative scheme for these problems based on the multilevel

quasidiffusion (MLQD) method
– Nonlinear projection approach, nonlinear method of moments
– The BTE is projected onto several low-order subspaces to derive an effective low-order

transport (ELOT) problem for moments
– The ELOT problem is coupled to multiphysics equations at their scale
– A nested set of iteration cycles is used to obtain the solution at each discrete time in

chronological order
• The basic idea is to eschew the notion of solving the problem at each time step

separately
– Time steps are aggregated into time ‘blocks’
– Nested structure of MLQD iterations allows for reorganization of iteration levels
– These collections of time steps can be solved together with overarching iterative cycles
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Thermal Radiative Transfer

• Boltzmann transport equation (BTE):

1
c
∂Ig
∂t

+Ω ·∇Ig + κg(T )Ig = κg(T )Bg(T )

Ig |r∈∂Γ = I in
g for Ω · nΓ < 0, Ig |t=0 = I0

g ,

• Material energy balance (MEB) equation:

∂ε(T )

∂t
=

G∑
g=1

(∫
4π

IgdΩ− 4πBg(T )

)
κg(T ), T |t=0 = T 0

• Temperature: T (r , t)
• Specific radiation intensity: Ig(r ,Ω, t)
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Multilevel Quasidiffusion Method for TRT
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∫
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∫
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ug

Effective group-averaged closures:

⟨κ⟩E , ⟨κ⟩B , ⟨f⟩E , ⟨κ⟩|F | , η̄
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Multilevel Quasidiffusion Method for TRT
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Multilevel Quasidiffusion Method for TRT
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Standard Iterative Scheme

• Discretize all equations with
implicit Backward-Euler time
integrator

• Divide temporal domain into N
intervals θn = (tn−1, tn]

• Times:
{tn | 0 = t0 < · · · < tN = tend}

Solve BTE on

Solve multigroup LOQD eqs. on

Solve effective grey problem on

Group-averaged closures

Calculate 

Solution at 
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Amalgamation of Time Steps

• Define B time blocks of time interval collections: Θb = ∪Nb
n=Nb−1+1θ

n

• 0 = N0 < · · · < NB = N
• Idea: iterate on solution over blocks Θb with subgrid of the original time intervals
• Block lengths are ∆Tb
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Basic Idea

• Consider the block Θb, with Tb−1 = tNb−1 , Tb = tNb

• Given an initial condition INb−1
g and material temperatures {T n}Nb

n=Nb−1
, the BTE

can be solved at all times {tn}Nb
n=Nb−1+1

• Given initial conditions ENb−1
g , F Nb−1

g , T Nb−1 and Eddington tensor data
{fng}

Nb
n=Nb−1

, the system of moment equations and the MEB can be solved at all

times {tn}Nb
n=Nb−1+1

• The BTE and low-order system can be iterated with one another between entire
blocks, communicating closures and temperatures on multiple time steps between
cycles
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New Iterative Scheme

Solve BTE on

Solve multigroup LOQD eqs. on

Solve effective grey problem on

Group-averaged closures

Calculate

Solution for
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Fleck-Cummings Test Problem Description

• Specification:
– 2D Cartesian domain 6 × 6 cm
– Temporal interval t ∈ [0,6 ns]

• Discretization:
– 20 × 20 spatial grid (0.3 × 0.3 cm cells)
– 300 time steps of length 0.02 ns
– 17 frequency groups
– 144 discrete directions
– All equations implicitly discretized in

time (backward-Euler)
– BTE discretized in space with simple

corner balance
– Low-order equations discretized with 2nd

order finite volumes scheme
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Number of Iterations per Time Block

• Iterations required over each
time block to reach relative
convergence criteria ϵ = 10−14

• Several block lengths tested,
from each block being one
time step to the entire temporal
interval
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Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 0.02 ns
(standard)
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Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 0.10 ns
(Nb = 5)
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Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 0.50 ns
(Nb = 25)
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|| 2

j=1
j=2
j=3

j=4
j=5
j=6

j=7
j=8
j=9

j=10
j=11
j=12

j=13
j=14

UNCLASSIFIED 8/16/2023 | 12



UNCLASSIFIED

Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 1.00 ns
(Nb = 50)
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Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 2.00 ns
(Nb = 100)
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Errors in the Iterative Solution & Convergence

• Relative error w.r.t. the
numerical solution on the given
grid in phase-space and time
(Ê , T̂ )

• Time block length: ∆Tb

• Number of time steps in a time
block: Nb

• shown: ∆Tb = 3.00 ns
(Nb = 150)
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Estimated Spectral Radii of Iterations
• Let Ê , T̂ be the the numerical solution

on the given grid in phase-space and
time

• E (j), T (j) are the j th iterate’s solution
• Errors are calculated in the norm ∥ · ∥t

2,
which is the 2-norm over space and
time for the temporal interval of a given
time block.

• Spectral radii values are averaged over
all time blocks and iterations

• ρ
(j)
E = ∥Ê − E (j)∥t

2/∥Ê − E (j+1)∥t
2

• ρ
(j)
T = ∥T̂ − T (j)∥t

2/∥T̂ − T (j+1)∥t
2

∆Tb (ns) Nb ρE ρT
0.02 1 0.042 0.035
0.04 2 0.068 0.049
0.10 5 0.067 0.058
0.20 10 0.128 0.100
0.50 25 0.158 0.136
1.00 50 0.171 0.154
2.00 100 0.194 0.178
3.00 150 0.177 0.167
6.00 300 0.159 0.156
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Discussion

• A new iterative scheme is presented for TRT problems with cycles over collections
of time steps (time blocks)
– Iterations converge rapidly
– The scheme is stable even for cycles over the entire temporal range of a problem
– Can be interpreted as a diagonally-implicit Runge-Kutta method (see paper)

• The scheme introduces possibility for parallel-in-time calculations
– Could solve high-order and low-order problems in parallel to one another
– Frequency of communication between processors and sizing of time blocks remain

open questions in this regard
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