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Introduction
We investigate the performance of computational methods for high-
energy density physics (HEDP) simulations based on ray-tracing
schemes (RTS).
The Boltzmann transport equation (BTE) models the involved radi-
ation transport component in HEDP simulations.
The method of long characteristics (MOLC) solves the integral form
of the BTE over characteristics extending over the entire spatial do-
main, and does not interpolate the solution on cell faces.
Effects of using RTS are investigated in the context of generating
closures for moment equations which serve to propagate radiation
transport effects to multiphysics equations
Since the BTE solution is defined on a separate discrete grid from
that of the multiphysics equations it is coupled with, either grid can
be refined or coarsened independently to manage computational
resources.

Thermal Radiative Transfer
The computational methods are analyzed with the thermal radiative
transfer (TRT) problem defined with the BTE:
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and material energy balance (MEB) equation:
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Specific radiation intensity: Ig(r ,Ω, t), material temperature: T (r , t)

Multilevel QD (VEF) Method
The multilevel quasidiffusion (MLQD) method is formulated by a
hierarchy of moment equations derived by projection operator ap-
proach.

Eg = c−1
∫

4π
IgdΩ

Fg =

∫
4π
ΩIgdΩ

E =
∑

g

Eg

F =
∑

g

Fg

Exact closures are defined by the Eddington tensor fg
[
I
]

=∫
4πΩ⊗Ω IgdΩ∫

4π IgdΩ , group-averaged opacities, and other functionals.
The BTE discretized with the MOLC serves to generate closures for
the system of moment equations, which are defined on the same
grid as the MEB equation.

Generation of Characteristic Grid
The material grid is orthogonal, defined for 2D Cartesian geometry
For each discrete direction of particle motion Ω, a mesh of charac-
teristics (rays) is constructed
The characteristic mesh is adaptively defined over the material grid
to satisfy (i) no characteristic traces over a material cell vertex, (ii)
all characteristics have width smaller than hmoc.

⇒ ⇒

Numerical Test Problem
The method is analyzed using the
Fleck-Cummings (FC) numerical
test problem. It comprises a 6 ×
6 cm thick homogeneous domain
with cv = 0.5917aR(T in)3. The
solution is a supersonic radiation
wave which propagates from the
left boundary source across to the
right boundary. The FC test is
simulated for t = [0,3] ns.

150 uniform time steps of length 0.02 ns
17 frequency groups, 144 discrete directions
All equations are discretized with implicit backward-Euler integrator.
Low-order moment equations are discretized in space with a
second-order finite volume scheme.
The material spatial grid is uniform with cells of width hmat.
Difference in variable y between mesh refinements (∥∆yh∥) and es-
timated convergence rate (ρy

h):

∥∆yh∥ = ∥yh − y2h∥L2, ρy
h =

∥∆y2h∥
∥∆yh∥

Iterative Behavior
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The number of BTE iterations per
time step to reach a convergence
criteria of ϵ = 10−14 is plotted,
with hmoc = 10−3 cm and several
refinements in hmat. We observe
rapid convergence for all cases.

Convergence with Grid Refinements
Convergence of material temperature (T ) and total radiation energy
density (E) with refinements in hmat while hmoc = 10−3 cm:

hmat ∥∆Thmat∥ ρT
hmat

∥∆Ehmat∥ ρE
hmat

0.6 19.1 - 2.13×10−1 -
0.3 9.70 1.96 1.10×10−1 1.94

0.15 4.88 1.99 5.69×10−2 1.97

Convergence of T and E with refinements in the characteristic grid
while hmat = 0.6,0.15 cm:
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Conclusions
Iterations at each time step are shown to converge rapidly with sev-
eral material grid refinements.
Refinement of the material grid yields first order convergence of the
solution.
Refinement of the characteristic grid gives less straightforward con-
vergence behavior. A more detailed analysis of the MOLC/RTS
schemes for these problems is warranted to fully understand this
convergence behavior.
The absolute difference between solutions for subsequent refine-
ments in the material grid is shown to be significantly larger than for
refinements in the characteristic grid.
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