A Reduced-Order Model for Thermal Radiative Transfer Based on POD-Petrov-Galerkin Projection of the Normalized Boltzmann Transport Equation

Joseph M. Coale ${ }^{1}$ \& Dmitriy Y. Anistratov ${ }^{2}$
${ }^{1}$ Los Alamos National Laboratory, CCS-2
${ }^{2}$ North Carolina State University, Dept. Nuclear Engineering

International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
August 16, 2023

High Energy Density Physics (Problem Description)

- We consider problems of high-energy density physics (HEDP)
- Phenomena characterized by extremely high temperatures
- Significant radiative transfer effects
- Examples: Supernovae, internal confinement fusion, etc.
- Phenomena in the high energy-density regime are modeled with complex, multi-physical systems of partial differential equations
- Typical challenges faced in the numerical simulation of these systems:
- Strong nonlinear behavior and coupling between equations
- Multi-scale characterization in space, time \& energy
- High dimensionality (usually due to the Boltzmann transport equation)

Reduced Order Models for Transport Problems

- The Boltzmann transport equation (BTE) models involved radiation transport physics
- 7-dimensional solution in 3D geometry
- 100-point grid in each dimension gives rise to 10^{14} degrees of freedom
- Reduced-order models (ROMs) for the BTE can significantly lower computational costs
- A ROM uses some low-dimensional equation(s) whose solution approximates the high-dimensional BTE solution
- Allows for cheaper computation of (typically) the most expensive component of HEDP simulations
- Well-known ROMs for the BTE include:
- Diffusion-type ROMs (flux-limited diffusion, P_{1}, \ldots)
- Models utilizing maximum-entropy closures (M_{n} methods)
- Variable Eddington factor (VEF) ROMs

Data-Based Reduced Order Models

- Data-based ROMs for the BTE offer some advantage to other ROMs
- The goal: to develop new ROMs which can produce more accurate (or faster) solutions compared to more classical models (e.g. diffusion)
- The idea: apply methods which create low-dimensional approximations leveraging known data on the solution to a problem
- Data-based ROMs have been successfully developed for:
- Linear neutral-particle transport problems
- Reactor physics problems (LWRs \& MSRs)
- Nonlinear radiative transfer problems
- We will introduce a new data-based ROM for the nonlinear thermal radiative transfer (TRT) problem
- Fundamental model which contains all essential challenges of the broader class of radiation-hydrodynamics problems
- Useful platform for the development of new models

Thermal Radiative Transfer

- Boltzmann transport equation (BTE):

$$
\begin{gathered}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\boldsymbol{\Omega} \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) \quad r \in \Gamma, \forall \Omega, g \in \mathbb{N}(G), t \geq 0 \\
\left.I_{g}\right|_{\boldsymbol{r} \in \partial \Gamma}=I_{g}^{\text {in }} \text { for } \boldsymbol{\Omega} \cdot \boldsymbol{n}_{\Gamma}<0,\left.\quad I_{g}\right|_{t=0}=I_{g}^{0}
\end{gathered}
$$

- Material energy balance (MEB) equation:

$$
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{G}\left(\int_{4 \pi} l_{g} d \Omega-4 \pi B_{g}(T)\right) \varkappa_{g}(T),\left.\quad T\right|_{t=0}=T^{0}
$$

- Material temperature: $T(\boldsymbol{r}, t)$
- Specific radiation intensity: $I_{g}(\boldsymbol{r}, \boldsymbol{\Omega}, t)$

Multilevel Quasidiffusion Method for TRT

$$
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T)
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{G}\left(\int_{4 \pi} I_{g} d \Omega-4 \pi B_{g}(T)\right) \varkappa_{g}(T)
$$

Multilevel Quasidiffusion Method for TRT

$$
\begin{aligned}
& \frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) \quad \mathcal{P}_{\Omega}^{0} u=\int_{4 \pi} u d \Omega, \mathcal{P}_{\Omega}^{1} u=\int_{4 \pi} \Omega u d \Omega \\
& \mathcal{P}_{\Omega}^{0}\left[\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}\right]=\mathcal{P}_{\Omega}^{0}\left[\varkappa_{g}(T) B_{g}(T)\right] \\
& \mathcal{P}_{\Omega}^{1}\left[\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}\right]=\mathcal{P}_{\Omega}^{1}\left[\varkappa_{g}(T) B_{g}(T)\right]
\end{aligned}
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{G}\left(\int_{4 \pi} I_{g} d \Omega-4 \pi B_{g}(T)\right) \varkappa_{g}(T)
$$

Multilevel Quasidiffusion Method for TRT

$$
\begin{array}{cc}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) & E_{g}=\frac{1}{c} \int_{4 \pi} I_{g} d \Omega, F_{g}=\int_{4 \pi} \Omega I_{g} d \Omega \\
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) & f_{g}=\frac{\int_{4 \pi}(\Omega \otimes \Omega) I_{g} d \Omega}{\int_{4 \pi} I_{g} d \Omega} \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\mathfrak{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 &
\end{array}
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{G}\left(c E_{g}-4 \pi B_{g}(T)\right) \varkappa_{g}(T)
$$

Multilevel Quasidiffusion Method for TRT

$$
\begin{array}{lr}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) & E_{g}=\frac{1}{c} \int_{4 \pi} I_{g} d \Omega, F_{g}=\int_{4 \pi} \Omega I_{g} d \Omega \\
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) & f_{g}=\frac{\int_{4 \pi}(\Omega \otimes \Omega) I_{g} d \Omega}{\int_{4 \pi} I_{g} d \Omega} \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\mathfrak{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 & \mathcal{P}_{G} u_{g}=\sum_{g=1}^{G} u_{g} \\
\mathcal{P}_{G}\left[\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}\right]=\mathcal{P}_{G}\left[4 \pi \varkappa_{g}(T) B_{g}(T)\right] & \\
\mathcal{P}_{G}\left[\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(\mathfrak{f}_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}\right]=0 & \\
\frac{\partial \varepsilon(T)}{\partial t}=\sum_{g=1}^{G}\left(c E_{g}-4 \pi B_{g}(T)\right) \varkappa_{g}(T) &
\end{array}
$$

Multilevel Quasidiffusion Method for TRT

$$
\begin{array}{cc}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) & E_{g}=\frac{1}{c} \int_{4 \pi} I_{g} d \Omega, \boldsymbol{F}_{g}=\int_{4 \pi} \Omega I_{g} d \Omega \\
\frac{\partial E_{g}}{\partial t}+\nabla \cdot \boldsymbol{F}_{g}+c \varkappa_{g}(T) E_{g}=4 \pi \varkappa_{g}(T) B_{g}(T) & f_{g}=\frac{\int_{4 \pi}(\boldsymbol{\Omega} \otimes \boldsymbol{\Omega}) I_{g} d \Omega}{\int_{4 \pi} d \Omega} \\
\frac{1}{c} \frac{\partial \boldsymbol{F}_{g}}{\partial t}+c \nabla \cdot\left(f_{g} E_{g}\right)+\varkappa_{g}(T) \boldsymbol{F}_{g}=0 & E=\sum_{g=1}^{G} E_{g}, \boldsymbol{F}=\sum_{g=1}^{G} \boldsymbol{F}_{g}
\end{array}
$$

$$
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}+\boldsymbol{c}\langle\varkappa\rangle_{E} E=c\langle\varkappa\rangle_{B} a_{R} T^{4}
$$

Effective group-averaged closures:

$$
\frac{1}{c} \frac{\partial \boldsymbol{F}}{\partial t}+c \boldsymbol{\nabla} \cdot\left(\left\langle\langle \rangle_{E} E\right)+\bar{K} \boldsymbol{F}+\bar{\eta} E=0\right.
$$

$$
\begin{aligned}
& \langle x\rangle_{E},\langle x\rangle_{B},\langle\hat{f}\rangle_{E}, \bar{K}, \bar{\eta}, \\
& \bar{K}=\operatorname{diag}\left(\langle x\rangle_{\mid F_{x}},\langle\varkappa\rangle_{\mid F_{y}}\right)
\end{aligned}
$$

$$
\frac{\partial \varepsilon(T)}{\partial t}=c\langle\varkappa\rangle_{E} E-c\langle\varkappa\rangle_{B} a_{R} T^{4}
$$

$$
\langle u\rangle_{w}=\frac{\sum_{g=1}^{G} u_{g} W_{g}}{\sum_{g=1}^{G} W_{g}}
$$

Idea for the Reduced Order Model

- Fundamental idea: if the Eddington tensor $\left(\mathfrak{f}_{g}\right)$ can be approximated, the TRT problem can be solved with only moment equations
- Direct (equation free) data-driven estimation of the Eddington tensor - Using proper orthogonal decomposition (POD) \& dynamic mode decomposition (DMD)
- Estimation of Eddington tensor using POD-Galerkin projectedBTE solution
- Low-dimensional projected BTE is cheap to solve
- Resulting closures are coupled to the problem solution
- The ROM introduced here is the next step in this line of work
- We use a POD-Petrov-Galerkin projection of the normalized BTE (NBTE)
- Allows direct formulation of the Eddington tensor in terms of moments of POD basis - The NBTE solution is naturally bounded and easier to project onto few POD modes

Idea for the Reduced Order Model

- Fundamental idea: if the Eddington tensor $\left(\mathfrak{f}_{g}\right)$ can be approximated, the TRT problem can be solved with only moment equations
- Direct (equation free) data-driven estimation of the Eddington tensor
- Using proper orthogonal decomposition (POD) \& dynamic mode decomposition (DMD)
- Estimation of Eddington tensor using POD-Galerkin projected BTE solution
- Low-dimensional projected BTE is cheap to solve
- Resulting closures are coupled to the problem solution
- The ROM introduced here is the next step in this line of work
- We use a POD-Petrov-Galerkin projection of the normalized BTE (NBTE)
- Allows direct formulation of the Eddington tensor in terms of moments of POD basis - The NBTE solution is naturally bounded and easier to project onto few POD modes

Idea for the Reduced Order Model

- Fundamental idea: if the Eddington tensor $\left(\mathfrak{f}_{g}\right)$ can be approximated, the TRT problem can be solved with only moment equations
- Direct (equation free) data-driven estimation of the Eddington tensor
- Using proper orthogonal decomposition (POD) \& dynamic mode decomposition (DMD)
- Estimation of Eddington tensor using POD-Galerkin projected BTE solution
- Low-dimensional projected BTE is cheap to solve
- Resulting closures are coupled to the problem solution
- The ROM introduced here is the next step in this line of work
- We use a POD-Petrov-Galerkin proiection of the normalized BTE (NBTE)
- Allows direct formulation of the Eddington tensor in terms of moments of POD basis - The NBTE solution is naturally bounded and easier to project onto few POD modes

Idea for the Reduced Order Model

- Fundamental idea: if the Eddington tensor $\left(\mathfrak{f}_{g}\right)$ can be approximated, the TRT problem can be solved with only moment equations
- Direct (equation free) data-driven estimation of the Eddington tensor - Using proper orthogonal decomposition (POD) \& dynamic mode decomposition (DMD)
- Estimation of Eddington tensor using POD-Galerkin projected BTE solution
- Low-dimensional projected BTE is cheap to solve
- Resulting closures are coupled to the problem solution
- The ROM introduced here is the next step in this line of work
- We use a POD-Petrov-Galerkin projection of the normalized BTE (NBTE)
- Allows direct formulation of the Eddington tensor in terms of moments of POD basis
- The NBTE solution is naturally bounded and easier to project onto few POD modes

The Normalized Boltzmann Transport Equation

$$
\begin{gathered}
\frac{1}{c} \frac{\partial I_{g}}{\partial t}+\Omega \cdot \nabla I_{g}+\varkappa_{g}(T) I_{g}=\varkappa_{g}(T) B_{g}(T) \\
\Downarrow \\
\frac{1}{c} \frac{\partial \bar{I}_{g}}{\partial t}+\Omega \cdot \nabla \bar{I}_{g}+\hat{\varkappa}_{g}\left(T, \phi_{g}\right) \bar{I}_{g}=\varkappa_{g}(T) \bar{B}_{g}\left(T, \phi_{g}\right) \\
\hat{\varkappa}_{g}=\varkappa_{g}+\frac{1}{c} \frac{\partial \ln \left(\phi_{g}\right)}{\partial t}+\Omega \cdot \nabla \ln \left(\phi_{g}\right), \quad \bar{B}_{g}=\frac{B_{g}}{\phi_{g}}
\end{gathered}
$$

- Normalized radiation intensity

$$
\bar{I}_{g}=\frac{I_{g}}{\phi_{g}}
$$

- Zeroth moment $\phi_{g}=\int_{4 \pi} l_{g} d \Omega=c E_{g}$
- The Eddington tensor is a linear function of \bar{I}_{g}

$$
\mathfrak{f}_{g}=\int_{4 \pi}(\Omega \otimes \Omega) \bar{I}_{g}
$$

Discretization of the NBTE

- Rewrite the NBTE (substitute \bar{I}_{g} into the BTE):

$$
\frac{1}{c} \frac{\partial\left(\phi_{g} \bar{I}_{g}\right)}{\partial t}+\Omega \cdot \nabla\left(\phi_{g} \bar{I}_{g}\right)+\varkappa_{g}(T) \phi_{g} \bar{I}_{g}=\varkappa_{g}(T) B_{g}(T)
$$

- We formulate discretization of the NBTE consistent with the simple corner balance (SCB) scheme for the BTE:

$$
\mathcal{R}_{h}^{n}\left(\bar{I}^{n}\right)=\frac{1}{c \Delta t^{n}}\left(\phi^{n} \odot_{\Omega} \overline{\boldsymbol{I}}^{n}-\phi^{n-1} \odot_{\Omega} \overline{\boldsymbol{I}}^{n-1}\right)+\mathcal{L}_{h}\left(\phi^{n}\right) \bar{I}^{n}-\mathcal{Q}_{h}^{n}, \quad \mathcal{R}_{h}^{n}\left(\overline{\boldsymbol{I}}^{n}\right)=0
$$

- $\overline{\boldsymbol{I}}^{n}$ and ϕ^{n} are discrete vectors over the entire phase space ($\boldsymbol{r}, \Omega, t, g$)
- Goal: project the discrete NBTE over the entire phase space with some inner product onto a low-dimensional space

Generation of data, definition of inner product

- We assume some set of a-priori known solution data to the TRT problem:

$$
\mathbf{A}^{\bar{l}}=\left[\overline{\boldsymbol{I}}^{1}, \ldots, \overline{\boldsymbol{I}}^{N}\right], \quad \mathbf{A}^{\phi}=\left[\boldsymbol{\phi}^{1}, \ldots, \boldsymbol{\phi}^{N}\right]
$$

- Define the discrete inner product

$$
\langle u, v\rangle=\int_{0}^{\infty} \int_{4 \pi} \int_{\Gamma} u v d \boldsymbol{r} d \Omega d \nu \Rightarrow\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{\top} \mathbf{W} \boldsymbol{v}
$$

- Using the grid functions of unknowns of the SCB scheme on a 2D square mesh:

$$
\mathbf{w}=\bigoplus_{g=1}^{G} \bigoplus_{m=1}^{M} \bigoplus_{j=1}^{J} \frac{w_{m} a_{j}}{4} \mathbb{I}_{4},
$$

where g, m, j are indices in group, angle, space

- To formulate the weighted SVD induced by the BE time integration scheme we define

$$
\mathbf{H}=\operatorname{diag}\left(\Delta t^{1}, \Delta t^{2}, \ldots, \Delta t^{N}\right)
$$

Expansion of the Normalized Intensities

- We seek an expansion basis which optimally captures $\mathbf{A}^{\overline{1}}$ in the norm induced by the derived inner product

$$
\overline{\boldsymbol{I}}^{n}=\sum_{\ell=1}^{k} \lambda_{\ell}^{n} \mathbf{u}_{\ell}=\mathbf{U}_{k} \Lambda^{n}, \quad k \leq r, \quad r=\operatorname{rank}\left(\mathbf{A}^{\bar{l}}\right)
$$

- Define the weighted singular value decomposition:

$$
\hat{\mathbf{A}}^{\top}=\mathbf{W}^{-1 / 2} \mathbf{A}^{\top} \mathbf{H}^{-1 / 2}=\hat{\mathbf{U}} \hat{\mathbf{S}} \hat{\mathbf{V}}^{\top}
$$

- The desired basis $\left\{\boldsymbol{u}_{\ell}\right\}$ is the first k column vectors of $\mathbf{U}=\mathbf{W}^{1 / 2} \hat{\mathbf{U}}$
- Substitute expansion into the discrete NBTE:

$$
\mathcal{R}_{h}^{n}\left(\mathbf{U}_{k} \Lambda^{n}\right)=0
$$

Projection of the NBTE

- Projecting the NBTE onto some test basis $\left\{\psi_{\ell}\right\}$ yields a $k \times k$ dynamical system whose solution is for Λ^{n}

$$
\psi^{\top} \mathbf{W} \mathcal{R}_{h}^{n}\left(\mathbf{U}_{k} \Lambda^{n}\right)=0, \quad \boldsymbol{\psi}^{\top} \mathbf{W} \mathbf{U}_{k} \Lambda^{0}=\boldsymbol{\psi}^{\top} \mathbf{W} \overline{\boldsymbol{I}}^{0}
$$

- We seek a projection basis which optimally projects the NBTE in the derived inner product (i.e. minimizes its residual)

$$
\Lambda^{n}=\arg \min _{\xi \in \mathbb{R}^{k}}\left\langle\mathcal{R}_{h}^{n}\left(\mathbf{U}_{k} \Lambda^{n}\right)\right\rangle
$$

- The solution to $\psi^{\top} \mathbf{W} \mathcal{R}_{h}^{n}\left(\mathbf{U}_{k} \wedge_{n}\right)$ satisfies the above with $\left\{\boldsymbol{\psi}_{\ell}\right\}$ defined:

$$
\psi_{\ell}=\frac{d \mathcal{R}_{h}^{n}\left(\lambda_{\ell}^{n} \boldsymbol{u}_{\ell}\right)}{d \lambda_{\ell}^{n}}
$$

Expansion of Eddington Tensor in Moments of POD Modes

- The Eddington tensor:

$$
\mathfrak{f}_{g}=\int_{4 \pi}(\boldsymbol{\Omega} \otimes \boldsymbol{\Omega}) \bar{l}_{g}
$$

- In discrete form:
- M discrete directions with $\left\{w_{m}\right\}$ quadrature weights
- $\overline{\boldsymbol{I}}_{m}$ is the portion of $\overline{\boldsymbol{I}}$ corresponding to discrete direction m

$$
\boldsymbol{f}^{n}=\sum_{m=1}^{M} w_{m}\left(\boldsymbol{\Omega}_{m} \otimes \boldsymbol{\Omega}_{m}\right) \overline{\boldsymbol{I}}_{m}^{n}
$$

- Substitute expansion in POD modes:
- $\boldsymbol{u}_{\ell, m}$ is the portion of \boldsymbol{u}_{ℓ} corresponding to discrete direction m

$$
\boldsymbol{f}^{n}=\sum_{\ell=1}^{k} \lambda_{\ell}^{n} \boldsymbol{u}_{\ell}^{\prime}, \quad \boldsymbol{u}_{\ell}^{\prime}=\sum_{m=1}^{M} w_{m}\left(\boldsymbol{\Omega}_{m} \otimes \boldsymbol{\Omega}_{m}\right) \boldsymbol{u}_{\ell, m}
$$

Rank of Expansion \& Data Collection

- Rank chosen so that the k-term expansion of \bar{I} has relative error in Frobeinus norm less than some $\xi \in[0,1]$:

$$
k=\min \left\{p: \sqrt{\frac{\sum_{\ell=p+1}^{r} \sigma_{\ell}^{2}}{\sum_{\ell=1}^{r} \sigma_{\ell}^{2}}} \leq \xi\right\}
$$

- Data for \bar{l} and ϕ can be generated from the BTE solution given a discretization that is algebraically consistent to the NBTE

$$
\mathbf{A}^{\prime}=\left[\boldsymbol{I}^{1}, \ldots, \boldsymbol{I}^{N}\right] \Rightarrow \phi^{n}=\sum_{m=1}^{M} w_{m} \boldsymbol{I}_{m}^{n}, \quad \overline{\boldsymbol{I}}^{n}=\frac{\boldsymbol{I}^{n}}{\phi^{n}}
$$

Fleck-Cummings Test Problem Description

- Specification:
- 2D Cartesian domain $6 \times 6 \mathrm{~cm}$
- Temporal interval $t \in[0,3 \mathrm{~ns}]$
- Discretization:
- 10×10 spatial grid ($0.6 \times 0.6 \mathrm{~cm}$ cells)
- 150 time steps of length 0.02 ns
- 17 frequency groups
- 144 discrete directions
- BTE discretized in space with the simple corner balance scheme
- Low-order QD (LOQD) equations discretized with $2^{\text {nd }}$ order finite volumes scheme
- The BTE and LOQD equation are discretized in time with the fully implicit (backward-Euler) scheme

Error Norms of ROM Solutions

- Relative error in E vs full-order model (FOM)
- FOM defined with the multilevel quasidiffusion system
- Calculated in the 2-norm at each time step

Error Norms of ROM Solutions

- Relative error in T vs full-order model (FOM)
- FOM defined with the multilevel quasidiffusion system
- Calculated in the 2-norm at each time step

Discussion

- The presented ROM is based on a POD-Petrov-Galerkin projection of the NBTE
- Solution of projected NBTE yields coefficients of the Eddington tensor expansion in angular moments (integrals) of POD modes of normalized intensity
- The generated closures are coupled to the multiphysics
- The ROM is demonstrated to effectively reduce the dimensionality of the TRT problem
- Error levels compared to the FOM are dependent on rank of expansion, and uniformly decrease with increases in rank
- Iterations at each time step converge rapidly (see paper)
- The ROM errors are shown to converge approximately linearly with ξ (see paper)

Acknowledgments

Los Alamos Report LA-UR-23-28595. This research project was funded by the Department of Defense, Defense Threat Reduction Agency, grant number HDTRA1-18-1-0042. This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.

Questions?

