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High Energy Density Physics (Problem Description)

• We consider problems of high-energy density physics (HEDP)
– Phenomena characterized by extremely high temperatures
– Significant radiative transfer effects
– Examples: Supernovae, internal confinement fusion, etc.

• Phenomena in the high energy-density regime are modeled with complex,
multi-physical systems of partial differential equations

• Typical challenges faced in the numerical simulation of these systems:
– Strong nonlinear behavior and coupling between equations
– Multi-scale characterization in space, time & energy
– High dimensionality (usually due to the Boltzmann transport equation)
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Reduced Order Models for Transport Problems

• The Boltzmann transport equation (BTE) models involved radiation transport
physics
– 7-dimensional solution in 3D geometry
– 100-point grid in each dimension gives rise to 1014 degrees of freedom

• Reduced-order models (ROMs) for the BTE can significantly lower computational
costs
– A ROM uses some low-dimensional equation(s) whose solution approximates the

high-dimensional BTE solution
– Allows for cheaper computation of (typically) the most expensive component of HEDP

simulations
• Well-known ROMs for the BTE include:

– Diffusion-type ROMs (flux-limited diffusion, P1, ...)
– Models utilizing maximum-entropy closures (Mn methods)
– Variable Eddington factor (VEF) ROMs
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Data-Based Reduced Order Models

• Data-based ROMs for the BTE offer some advantage to other ROMs
– The goal: to develop new ROMs which can produce more accurate (or faster) solutions

compared to more classical models (e.g. diffusion)
– The idea: apply methods which create low-dimensional approximations leveraging

known data on the solution to a problem
• Data-based ROMs have been successfully developed for:

– Linear neutral-particle transport problems
– Reactor physics problems (LWRs & MSRs)
– Nonlinear radiative transfer problems

• We will introduce a new data-based ROM for the nonlinear thermal radiative
transfer (TRT) problem
– Fundamental model which contains all essential challenges of the broader class of

radiation-hydrodynamics problems
– Useful platform for the development of new models
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Thermal Radiative Transfer

• Boltzmann transport equation (BTE):

1
c
∂Ig
∂t

+Ω ·∇Ig + κg(T )Ig = κg(T )Bg(T ) r ∈ Γ , ∀Ω , g ∈ N(G) , t ≥ 0 ,

Ig |r∈∂Γ = I in
g for Ω · nΓ < 0, Ig |t=0 = I0

g ,

• Material energy balance (MEB) equation:

∂ε(T )

∂t
=

G∑
g=1

(∫
4π

IgdΩ− 4πBg(T )

)
κg(T ), T |t=0 = T 0

• Material temperature: T (r , t)
• Specific radiation intensity: Ig(r ,Ω, t)
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Multilevel Quasidiffusion Method for TRT
1
c
∂Ig
∂t

+Ω ·∇Ig + κg(T )Ig = κg(T )Bg(T )

P0
Ω

[1
c
∂Ig
∂t

+Ω·∇Ig+κg(T )Ig
]
= P0

Ω

[
κg(T )Bg(T )

]
P1
Ω

[1
c
∂Ig
∂t

+Ω·∇Ig+κg(T )Ig
]
= P1

Ω

[
κg(T )Bg(T )

]
PG

[∂Eg

∂t
+∇·F g+cκg(T )Eg

]
= PG

[
4πκg(T )Bg(T )

]
PG

[1
c
∂F g

∂t
+ c∇ · (fgEg) + κg(T )F g

]
= 0

∂ε(T )

∂t
=

G∑
g=1

(∫
4π

IgdΩ− 4πBg(T )

)
κg(T )

P0
Ωu =

∫
4π

udΩ, P1
Ωu =

∫
4π

ΩudΩ

fg =

∫
4π(Ω⊗Ω)IgdΩ∫

4π IgdΩ

PGug =
G∑

g=1

ug

Effective group-averaged closures:
⟨κ⟩E , ⟨κ⟩B, ⟨f⟩E , K̄ , η̄,

K̄ = diag(⟨κ⟩|Fx |, ⟨κ⟩|Fy |)

⟨u⟩W =

∑G
g=1 ugWg∑G

g=1 Wg
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Multilevel Quasidiffusion Method for TRT
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1
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∂F g

∂t
+ c∇ · (fgEg) + κg(T )F g = 0

∂E
∂t

+∇ · F + c⟨κ⟩EE = c⟨κ⟩BaRT 4

1
c
∂F
∂t

+ c∇ · (⟨f⟩EE) + K̄ F + η̄E = 0

∂ε(T )

∂t
= c⟨κ⟩EE − c⟨κ⟩BaRT 4

Eg =
1
c

∫
4π

IgdΩ, F g =

∫
4π

ΩIgdΩ

fg =
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4π(Ω⊗Ω)IgdΩ∫

4π IgdΩ
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Idea for the Reduced Order Model

• Fundamental idea: if the Eddington tensor (fg) can be approximated, the TRT
problem can be solved with only moment equations

• Direct (equation free) data-driven estimation of the Eddington tensor
– Using proper orthogonal decomposition (POD) & dynamic mode decomposition (DMD)

• Estimation of Eddington tensor using POD-Galerkin projected BTE solution
– Low-dimensional projected BTE is cheap to solve
– Resulting closures are coupled to the problem solution

• The ROM introduced here is the next step in this line of work
– We use a POD-Petrov-Galerkin projection of the normalized BTE (NBTE)
– Allows direct formulation of the Eddington tensor in terms of moments of POD basis
– The NBTE solution is naturally bounded and easier to project onto few POD modes
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The Normalized Boltzmann Transport Equation
1
c
∂Ig
∂t

+Ω ·∇Ig + κg(T )Ig = κg(T )Bg(T )

⇓

1
c
∂ Īg
∂t

+Ω ·∇Īg + κ̂g(T , ϕg )̄Ig = κg(T )B̄g(T , ϕg)

κ̂g = κg +
1
c
∂ ln(ϕg)

∂t
+Ω ·∇ ln(ϕg), B̄g =

Bg

ϕg
• Normalized radiation intensity

Īg =
Ig
ϕg

• Zeroth moment ϕg =
∫

4π IgdΩ = cEg
• The Eddington tensor is a linear function of Īg

fg =

∫
4π
(Ω⊗Ω)̄Ig
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Discretization of the NBTE

• Rewrite the NBTE (substitute Īg into the BTE):

1
c
∂(ϕg Īg)

∂t
+Ω ·∇(ϕg Īg) + κg(T )ϕg Īg = κg(T )Bg(T )

• We formulate discretization of the NBTE consistent with the simple corner balance
(SCB) scheme for the BTE:

Rn
h(̄I

n
) =

1
c∆tn (ϕ

n ⊙Ω Īn − ϕn−1 ⊙Ω Īn−1
) + Lh(ϕ

n)̄In −Qn
h, Rn

h(̄I
n
) = 0

• Īn and ϕn are discrete vectors over the entire phase space (r ,Ω, t ,g)
• Goal: project the discrete NBTE over the entire phase space with some inner

product onto a low-dimensional space
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Generation of data, definition of inner product
• We assume some set of a-priori known solution data to the TRT problem:

AĪ = [̄I1
, . . . , ĪN

], Aϕ = [ϕ1, . . . ,ϕN ]

• Define the discrete inner product

⟨u, v⟩ =
∫ ∞

0

∫
4π

∫
Γ

uv drdΩdν ⇒ ⟨u,v⟩ = u⊤Wv

• Using the grid functions of unknowns of the SCB scheme on a 2D square mesh:

W =
G⊕

g=1

M⊕
m=1

J⊕
j=1

wmaj

4
I4,

where g,m, j are indices in group, angle, space
• To formulate the weighted SVD induced by the BE time integration scheme we

define
H = diag(∆t1, ∆t2, . . . , ∆tN),

UNCLASSIFIED 8/16/2023 | 10



UNCLASSIFIED

Expansion of the Normalized Intensities

• We seek an expansion basis which optimally captures AĪ in the norm induced by
the derived inner product

Īn
=

k∑
ℓ=1

λn
ℓuℓ = UkΛ

n, k ≤ r , r = rank(AĪ)

• Define the weighted singular value decomposition:

ÂĪ = W−1/2AĪH−1/2 = ÛŜV̂⊤

• The desired basis {uℓ} is the first k column vectors of U = W1/2Û
• Substitute expansion into the discrete NBTE:

Rn
h(UkΛ

n) = 0
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Projection of the NBTE

• Projecting the NBTE onto some test basis {ψℓ} yields a k × k dynamical system
whose solution is for Λn

Ψ⊤WRn
h(UkΛ

n) = 0, Ψ⊤WUkΛ
0 = Ψ⊤WĪ0

• We seek a projection basis which optimally projects the NBTE in the derived inner
product (i.e. minimizes its residual)

Λn = arg min
ξ∈Rk

⟨Rn
h(UkΛ

n)⟩

• The solution to Ψ⊤WRn
h(UkΛn) satisfies the above with {ψℓ} defined:

ψℓ =
dRn

h(λ
n
ℓuℓ)

dλn
ℓ
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Expansion of Eddington Tensor in Moments of POD Modes

• The Eddington tensor:

fg =

∫
4π
(Ω⊗Ω)̄Ig

• In discrete form:
– M discrete directions with {wm} quadrature weights
– Īm is the portion of Ī corresponding to discrete direction m

f n =
M∑

m=1

wm(Ωm ⊗Ωm )̄I
n
m

• Substitute expansion in POD modes:
– uℓ,m is the portion of uℓ corresponding to discrete direction m

f n =
k∑

ℓ=1

λn
ℓu′

ℓ, u′
ℓ =

M∑
m=1

wm(Ωm ⊗Ωm)uℓ,m
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Rank of Expansion & Data Collection

• Rank chosen so that the k -term expansion of Ī has relative error in Frobeinus
norm less than some ξ ∈ [0,1]:

k = min

{
p :

√∑r
ℓ=p+1 σ

2
ℓ∑r

ℓ=1 σ
2
ℓ

≤ ξ

}
• Data for Ī and ϕ can be generated from the BTE solution given a discretization

that is algebraically consistent to the NBTE

AI = [I1, . . . , IN ] ⇒ ϕn =
M∑

m=1

wmIn
m, Īn

=
In

ϕn
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Fleck-Cummings Test Problem Description

• Specification:
– 2D Cartesian domain 6 × 6 cm
– Temporal interval t ∈ [0,3 ns]

• Discretization:
– 10 × 10 spatial grid (0.6 × 0.6 cm cells)
– 150 time steps of length 0.02 ns
– 17 frequency groups
– 144 discrete directions
– BTE discretized in space with the simple

corner balance scheme
– Low-order QD (LOQD) equations

discretized with 2nd order finite volumes
scheme

– The BTE and LOQD equation are
discretized in time with the fully implicit
(backward-Euler) scheme

UNCLASSIFIED 8/16/2023 | 15



UNCLASSIFIED

Error Norms of ROM Solutions

• Relative error in E vs
full-order model
(FOM)

• FOM defined with the
multilevel
quasidiffusion system

• Calculated in the
2-norm at each time
step
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M
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Discussion

• The presented ROM is based on a POD-Petrov-Galerkin projection of the NBTE
– Solution of projected NBTE yields coefficients of the Eddington tensor expansion in

angular moments (integrals) of POD modes of normalized intensity
– The generated closures are coupled to the multiphysics

• The ROM is demonstrated to effectively reduce the dimensionality of the TRT
problem
– Error levels compared to the FOM are dependent on rank of expansion, and uniformly

decrease with increases in rank
– Iterations at each time step converge rapidly (see paper)
– The ROM errors are shown to converge approximately linearly with ξ (see paper)
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